1£®ÉèµÈ²îÊýÁÐ{an}Âú×㣺$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin£¨{a_4}+{a_5}£©}}=1$£¬¹«²î$d¡Ê£¨-\frac{1}{2}£¬0£©$Èôµ±ÇÒ½öµ±n=11ʱ£¬ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óÖµ£¬ÔòÊ×Ïîa1µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨\frac{10}{11}¦Ð£¬¦Ð£©$B£®$[\frac{10}{11}¦Ð£¬¦Ð£©$C£®$[¦Ð£¬\frac{11}{10}¦Ð£©$D£®$£¨¦Ð£¬\frac{11}{10}¦Ð£©$

·ÖÎö ÀûÓÃÈý½Çº¯ÊýµÄ±¶½Ç¹«Ê½¡¢»ý»¯ºÍ²îÓëºÍ²î»¯»ý¹«Ê½»¯¼òÒÑÖªµÄµÈʽ£¬¸ù¾Ý¹«²îdµÄ·¶Î§Çó³ö¹«²îµÄÖµ£¬´úÈëǰnÏîºÍ¹«Ê½ºóÀûÓöþ´Îº¯ÊýµÄ¶Ô³ÆÖáµÄ·¶Î§Çó½âÊ×Ïîa1ȡֵ·¶Î§£®

½â´ð ½â£ºÓÉ$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin£¨{a_4}+{a_5}£©}}=1$£¬
µÃ$\frac{si{n}^{2}{a}_{2}£¨1-si{n}^{2}{a}_{7}£©-co{s}^{2}{a}_{2}£¨1-co{s}^{2}{a}_{7}£©}{sin£¨{a}_{4}+{a}_{5}£©}$=$\frac{si{n}^{2}{a}_{2}co{s}^{2}{a}_{7}-co{s}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin£¨{a}_{4}+{a}_{5}£©}$
=$\frac{£¨sin{a}_{2}cos{a}_{7}-cos{a}_{2}sin{a}_{7}£©£¨sin{a}_{2}cos{a}_{7}+cos{a}_{2}sin{a}_{7}£©}{sin£¨{a}_{4}+{a}_{5}£©}$
=$\frac{sin£¨{a}_{2}-{a}_{7}£©sin£¨{a}_{2}+{a}_{7}£©}{sin£¨{a}_{4}+{a}_{5}£©}$=sin£¨a2-a7£©=sin£¨-5d£©=1
¡àsin£¨5d£©=-1£®
¡ßd¡Ê£¨-$\frac{1}{2}$£¬0£©£¬¡à5d¡Ê£¨-$\frac{5}{2}$£¬0£©£¬
Ôò5d=$-\frac{¦Ð}{2}$£¬d=-$\frac{¦Ð}{10}$£®
ÓÉSn=na1+$\frac{n£¨n-1£©d}{2}$=na1-$\frac{n£¨n-1£©}{2}¡Á\frac{¦Ð}{10}$=-$\frac{{n}^{2}}{20}$¦Ð+£¨a1+$\frac{¦Ð}{20}$£©n£®
¶Ô³ÆÖá·½³ÌΪn=$\frac{10}{¦Ð}$£¨a1+$\frac{¦Ð}{20}$£©£¬
ÓÉÌâÒâµ±ÇÒ½öµ±n=11ʱ£¬ÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óÖµ£¬
¡à$\frac{21}{2}$£¼$\frac{10}{¦Ð}$£¨a1+$\frac{¦Ð}{20}$£©£¼$\frac{23}{2}$£¬½âµÃ£º¦Ð£¼a1£¼$\frac{11¦Ð}{10}$£®
¡àÊ×Ïîa1µÄȡֵ·¶Î§ÊÇ£¨¦Ð£¬$\frac{11¦Ð}{10}$£©£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ£¬¿¼²éÁËÈý½Çº¯ÊýµÄÓйع«Ê½£¬¿¼²éÁ˵ȲîÊýÁеÄǰnÏîºÍ£¬ÑµÁ·Á˶þ´Îº¯ÊýÈ¡µÃ×îÖµµÃÌõ¼þ£¬¿¼²éÁ˼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ò»´üÖÐÓÐ5¸ö°×Çò¡¢3¸öºìÇò£¬ÏÖ´Ó´üÖÐÍùÍâÈ¡Çò£¬Ã¿´ÎÈÎȡһ¸ö¼ÇÏÂÑÕÉ«ºó·Å»Ø£¬Ö±µ½ºìÇò³öÏÖ10´Îʱֹͣ£¬Éèֹͣʱ¹²È¡ÁËX´ÎÇò£¬ÔòP£¨X=12£©µÈÓÚ£¨¡¡¡¡£©
A£®C${\;}_{12}^{10}$£¨$\frac{3}{8}$£©10£¨$\frac{5}{8}$£©2B£®C${\;}_{12}^{9}$£¨$\frac{3}{8}$£©9£¨$\frac{5}{8}$£©2£¨$\frac{3}{8}$£©C£®C${\;}_{11}^{9}$£¨$\frac{5}{8}$£©9£¨$\frac{3}{8}$£©2D£®C${\;}_{11}^{9}$£¨$\frac{3}{8}$£©10£¨$\frac{5}{8}$£©2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÈçͼËùʾµÄÕý·½ÐÎÖÐËæ»úȡһµã£¬Ôò´ËµãÂäÈëÒõÓ°²¿·Ö£¨ÇúÏßCÊǺ¯Êýf£¨x£©=$\frac{1}{\sqrt{2¦Ð}}$${\;}^{{e}^{-\frac{{x}^{2}}{2}}}$ µÄͼÏ󣩵ĸÅÂÊΪ£¨¡¡¡¡£©
×¢£ºP£¨¦Ì-¦Ò£¼x¡Ü¦Ì+¦Ò£©=0.6826£¬P£¨¦Ì-2¦Ò£¼x¡Ü¦Ì+2¦Ò£©=0.9544£¬P£¨¦Ì-3¦Ò£¼x¡Ü¦Ì+3¦Ò£©=0.9974£®
A£®0.2386B£®0.2718C£®0.3413D£®0.4772

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Éèf£¨x£©=2x3+ax2+bx+1ÔÚ£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪy=-6£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚRt¡÷AOBÖУ¬¡ÏOAB=30¡ã£¬Ð±±ßAB=4£¬Rt¡÷AOC¿ÉÒÔͨ¹ýRt¡÷AOBÒÔÖ±ÏßAOΪÖáÐýתµÃµ½£¬ÇÒ¶þÃæ½ÇB-AO-CµÄÖ±¶þÃæ½Ç£¬DÊÇABµÄÖе㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæCOD¡ÍÆ½ÃæAOB£»
£¨2£©ÇóÒìÃæÖ±ÏßAOÓëCDËù³É½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªsin$¦È=\frac{1}{3}$£¬¦ÈÊǵڶþÏóÏ޽ǣ¬Çócos¦È•tan¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Çóº¯Êýf£¨x£©=$\frac{1}{3}$x3-x2-8x+1£¨-6¡Üx¡Ü6£©µÄµ¥µ÷Çø¼ä¡¢¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ²¢È¡ÏàͬµÄµ¥Î»³¤¶È£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©°ÑÇúÏßC1µÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬C2µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1£¬C2ÏཻÓÚA£¬BÁ½µã£¬ABµÄÖеãΪP£¬¹ýµãP×öÇúÏßC2µÄ´¹Ïß½»ÇúÏßC1ÓÚE£¬FÁ½µã£¬Çó|PE|•|PF|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®»¯¼ò£¨$\root{3}{\root{6}{{a}^{9}}}$£©4•£¨$\root{6}{\root{3}{{a}^{9}}}$£©4µÄ½á¹ûµÈÓÚa4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸