精英家教网 > 高中数学 > 题目详情

【题目】(Ⅰ)解不等式|6﹣|2x+1||>1; (Ⅱ)若关于x的不等式|x+1|+|x﹣1|+3+x<m有解,求实数m的取值范围.

【答案】解:(Ⅰ)∵|6﹣|2x+1||>1, ∴|2x+1|>7或|2x+1|<5,
解得:x>3或x<﹣4或﹣3<x<2,
故原不等式的解集是{x|x>3或x<﹣4或﹣3<x<2};
(Ⅱ)∵|x+1|+|x﹣1|+3+x<m,
∴x≥1时,x+1+x﹣1+3+x<m,
解得:x<
若关于x的不等式|x+1|+|x﹣1|+3+x<m有解,
>1,解得:m>6,
﹣1<x<1时,x+1+1﹣x+3+x<m,
解得:x<m﹣5,
若关于x的不等式|x+1|+|x﹣1|+3+x<m有解,
故m﹣5>1,解得:m>6,
m≤﹣1时,﹣x﹣1+1﹣x+3+x<m,
解得:x>3﹣m,
若关于x的不等式|x+1|+|x﹣1|+3+x<m有解,
故3﹣m<﹣1,解得:m>4,
综上,实数m的取值范围(4,+∞)
【解析】(Ⅰ)通过讨论x的范围,求出不等式的解集即可;(Ⅱ)通过讨论x的范围,去掉绝对值,求出不等式的解集,得到关于m的不等式,取并集即可.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P﹣ABCD的体积.
(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;
(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点F(1,0),动点P(异于原点)在y轴上运动,连接FP,过点P作PM交x轴于点M,并延长MP到点N,且
(1)求动点N的轨迹C的方程;
(2)若直线l与动点N的轨迹交于A、B两点,若 ,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P,Q从点A(1,0)出发沿单位圆运动,点P按逆时针方向每秒钟转 弧度,点Q按顺时针方向每秒钟转 弧度,设P,Q第一次相遇时在点B,则B点的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

2

﹣2

0


(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:四棱锥P﹣ABCD中,底面ABCD是平行四边形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,点F是PB的中点,点E在边BC上移动.
(1)证明:当点E在边BC上移动时,总有EF⊥AF;
(2)当CE等于何值时,PA与平面PDE所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的奇函数,且当x≥0时,f(x)=x2﹣(a+4)x+a.
(1)求实数a的值及f(x)的解析式;
(2)求使得f(x)=x+6成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是正方体的平面展开图,在这个正方体中, ①BM与ED平行;
②CN与BE是异面直线;
③CN与BM成60°角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是(

A.③
B.③④
C.①③
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案