精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是(

A.{t| }
B.{t| ≤t≤2}??
C.{t|2 }
D.{t|2 }

【答案】D
【解析】解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点
分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则
∵A1M∥D1E,A1M平面D1AE,D1E平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN内的相交直线
∴平面A1MN∥平面D1AE,
由此结合A1F∥平面D1AE,可得直线A1F平面A1MN,即点F是线段MN上上的动点.
设直线A1F与平面BCC1B1所成角为θ
运动点F并加以观察,可得
当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1 , 此时所成角θ达到最小值,满足tanθ= =2;
当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ= =2
∴A1F与平面BCC1B1所成角的正切取值范围为[2,2 ]
故选:D

设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点.分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可证出平面A1MN∥平面D1AE,从而得到A1F是平面A1MN内的直线.由此将点F在线段MN上运动并加以观察,即可得到A1F与平面BCC1B1所成角取最大值、最小值的位置,由此不难得到A1F与平面BCC1B1所成角的正切取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,直线 与以原点为圆心、椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)过椭圆的左顶点作直线,与圆相交于两点 ,若是钝角三角形,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a<b,则必有(
A.af(b)≤bf(a)
B.bf(a)≤af(b)
C.af(a)≤f(b)
D.bf(b)≤f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx﹣ (a>0),g(x)=4x+ + ,且y=f(x+ )为偶函数.设集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,记f(x)在A上的最大值与最小值分别为M,N,求M﹣N;
(2)若对任意的实数t,总存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)对x∈[0,1]恒成立,试求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数的图像在点处的切线与直线平行,求实数的值;

(Ⅱ)讨论函数的单调性;

(Ⅲ)若时,在定义域内总有成立,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,过F作垂直于x轴的直线交抛物线于A,B,两点,△AOB的面积为8,直线l与抛物线C相切于Q点,P是l上一点(不与Q重合).

(1)求抛物线C的方程;
(2)若以线段PQ为直径的圆恰好经过F,求|PF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求不等式的解集;

若函数的最小值为,整数满足,求证.

查看答案和解析>>

同步练习册答案