精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)的定义域为(0,1),函数y=f(x-2)的定义域为(  )
A.(-2,-1)B.(0,2)C.(0,1)D.(2,3)

分析 运用换元法,令t=x-2,由定义域的含义,可得0<x-2<1,解不等式即可得到所求定义域.

解答 解:可令t=x-2,
则f(t)的定义域与f(x)的定义域均为(0,1),
即0<t<1,即0<x-2<1,
解得2<x<3.
则f(x-2)的定义域为(2,3).
故选:D.

点评 本题考查抽象函数的定义域的求法,注意运用换元法和定义域的含义,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若不等式ax2+5x-2>0的解集是$\left\{{\left.x\right|\frac{2}{3}<x<1}\right\}$,
(1)求a的值;
(2)求不等式ax2-5x-1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$=(sin35°,cos35°),$\overrightarrow b$=(cos5°,-sin5°),则$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各项中,值等于$\frac{1}{2}$的是(  )
A.cos45°cos15°+sin45°sin15°B.$\sqrt{\frac{{1-cos\frac{π}{6}}}{2}}$
C.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$D.$\frac{{tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{\sqrt{x},x≥0}\end{array}\right.$,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+2(x<1)}\\{-x-1(x≥1)}\end{array}\right.$,若f(2-x)>f(x),则x的取值范围是(  )
A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:mx2+ny2=1,(m>0,n<0)的一条渐近线与圆x2+y2-6x-2y+9=0相切,则双曲线C的离心率等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos(?x-$\frac{π}{3}$)-sin($\frac{π}{2}$-?x).
(I)求f(x)的最小值
(II)若函数y=f(x)图象的两个相邻的对称轴之间的距离为$\frac{π}{2}$,求其单调增区间.

查看答案和解析>>

同步练习册答案