精英家教网 > 高中数学 > 题目详情
8.下列各项中,值等于$\frac{1}{2}$的是(  )
A.cos45°cos15°+sin45°sin15°B.$\sqrt{\frac{{1-cos\frac{π}{6}}}{2}}$
C.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$D.$\frac{{tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

分析 利用两角和与差的三角函数,二倍角公式化简求解判断即可.

解答 解:cos45°cos15°+sin45°sin15°=cos30°=$\frac{\sqrt{3}}{2}$,
$\sqrt{\frac{1-cos\frac{π}{6}}{2}}$=$sin\frac{π}{12}$≠$\frac{1}{2}$.
cos2$\frac{π}{12}$-sin2$\frac{π}{12}$=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
$\frac{{tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$=$\frac{1}{2}tan45°=\frac{1}{2}$.
故选:D.

点评 本题考查三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$y=sin(\frac{π}{6}-x)$的图象向左平移m个单位,所得图象关于y轴对称,则m的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.学校为了解高二年级l203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}满足a1=2,an+1=an2-nan+1,n=1,2,3,…,
(1)求a2,a3,a4
(2)猜想出{an}的一个通项公式,并用数学归纳法证明你的结论;
(3)设bn=$\frac{1}{a_n^2}$,数列{bn}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.记max{a,b}为a、b中较大者,函数f(x)=x2+px+q的图象与x轴交于两点A(x1,0)、B(x2,0),且x1<x2,若存在整数n,使n<x1<x2<n+1,则(  )
A.max{f(n),f(n+1)}>1B.max{f(n),f(n+1)}<1C.max{f(n),f(n+1)}>$\frac{1}{2}$D.max{f(n),f(n+1)}<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为(0,1),函数y=f(x-2)的定义域为(  )
A.(-2,-1)B.(0,2)C.(0,1)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)=($\frac{1}{2}$)x-x+1,若在用二分法求f(x)在(1,3)内的零点近似值时,依次求得f(1)>0,f(3)<0,f(2)<0,f(1.5)<0,则可以判断零点位于区间(  )
A.(2.5,3)B.(2,2.5)C.(1,1.5)D.(1.5,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是非零向量,
命题p:若 $\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{0}$,$\overrightarrow{b}$•$\overrightarrow{c}$=$\overrightarrow{0}$,则$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{0}$
命题q:若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$ 则$\overrightarrow{a}$∥$\overrightarrow{c}$,则下列命题是假命题的是(  )
A.p∨qB.p∧qC.(¬p)∨(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若角α的终边经过点P(1,$\sqrt{3}$),则cosα+tanα的值为(  )
A.$\frac{{1+2\sqrt{3}}}{2}$B.$\frac{{-1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{3}}}{2}$D.$\frac{{-1+2\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案