精英家教网 > 高中数学 > 题目详情
19.学校为了解高二年级l203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为30.

分析 由题意知了解1203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,1203除以40不是整数,先随机的去掉3个人,再除以40,得到每一段有30个人,在抽样过程中每个个体被抽到的概率相等.

解答 解:了解1203名学生对学校某项教改试验的意见,
打算从中抽取一个容量为40的样本,
∵1203除以40不是整数,
∴先随机的去掉3个人,再除以40,得到每一段有30个人,
则分段的间隔k为30.
故答案为30.

点评 本题考查系统抽样,系统抽样是对于样本中个体比较多,且个体之间没有明显的差距,可以采用系统抽样,在抽样过程中,若出现总体数不能被样本容量整除,则要剔除几个个体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠BAC=120°,AB=2,AC=1,P是BC边上的一点,则${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范围是(  )
A.$[\frac{1}{4},3]$B.$[\frac{1}{2},5]$C.$[\frac{13}{4},5]$D.$[-\frac{27}{4},-5]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用量词符号“?”或“?”表示下列命题:
(1)不论m取何实数,方程x2+x-m=0必有实数根:?m∈R,方程x2+x-m=0必有实数根;
(2)存在一个有理数x0,使得x02=8:?x0∈Q,使得x02=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,都有$\frac{|PB|}{|PA|}$为常数?若存在,试求所有满足条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}(n∈N*)的前n项和为Sn,且a3=5,S3=9
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn
(3)若等比数列{cn}(n∈N*)中,c2=a2,c3=a5,求数列{cn}的前n项和Qn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=3sin(2x-$\frac{π}{3}$)+1,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象可以由函数y=sinx(x∈R)的图象经过怎样变换得到?
(3)求f(x)的最大值及取最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各项中,值等于$\frac{1}{2}$的是(  )
A.cos45°cos15°+sin45°sin15°B.$\sqrt{\frac{{1-cos\frac{π}{6}}}{2}}$
C.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$D.$\frac{{tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案