精英家教网 > 高中数学 > 题目详情
9.在△ABC中,∠BAC=120°,AB=2,AC=1,P是BC边上的一点,则${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范围是(  )
A.$[\frac{1}{4},3]$B.$[\frac{1}{2},5]$C.$[\frac{13}{4},5]$D.$[-\frac{27}{4},-5]$

分析 利用余弦定理求得BC,再利用正弦定理求得sinB,可得cosB的值,再把${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$=${(λ•\overrightarrow{BC})}^{2}$-($\overrightarrow{AB}$+λ$\overrightarrow{BC}$)•$\overrightarrow{BC}$ 转化为关于λ的二次函数,结合二次函数在闭区间上的最值即可求解.

解答 解:∵在△ABC中,∠BAC=120°,AB=2,AC=1,
在△ABC中,∠BAC=120°中,根据余弦定理得,BC2=AB2+AC2-2AB•ACcos∠BAC,
∴BC=$\sqrt{4+1-2•2•1•cos120°}$=$\sqrt{7}$.
根据正弦定理得,$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,即$\frac{1}{sinB}$=$\frac{\sqrt{7}}{sin120°}$,∴sinB=$\frac{3}{2\sqrt{7}}$,cosB=$\frac{5}{2\sqrt{7}}$,
从而有${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$=${(λ•\overrightarrow{BC})}^{2}$-($\overrightarrow{AB}$+λ$\overrightarrow{BC}$)•$\overrightarrow{BC}$=7λ2-2$\sqrt{7}$•$\frac{5}{2\sqrt{7}}$-7λ=7${(λ-\frac{1}{2})}^{2}$+$\frac{13}{4}$,
∴${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范围是[$\frac{13}{4}$,5].
故选:C.

点评 本题主要考查了正弦定理、余弦定理在求解三角形中的应用,向量的数量积的应用及二次函数的性质的灵活应用是求解的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列命题中正确的有(  )
①命题?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“对?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要条件;
③R2越小,模型的拟合效果越好;
④十进制数66化为二进制数是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$sin({π-α})=\frac{{\sqrt{5}}}{5}$,则sin4α-cos4α为(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求过点P$(2,2\sqrt{3})$的圆x2+y2=4的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知盒中装有3个红球,2个白球,5个黑球,它们除颜色外完全相同,小明需要一个红球,若他每次从中任取一个球且取出的球不再放回,则他在第一次拿到白球的条件下,第二次拿到红球的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}中,a2=1,公差d=2,则a3=(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,a,b,c分别是三个内角A,B,C的对边,且(2c-a)cosB=bcosA.
(Ⅰ)求B;
(Ⅱ)若BC=6,AC边上的中线BD的长为7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$y=sin(\frac{π}{6}-x)$的图象向左平移m个单位,所得图象关于y轴对称,则m的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.学校为了解高二年级l203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为30.

查看答案和解析>>

同步练习册答案