精英家教网 > 高中数学 > 题目详情
14.等差数列{an}中,a2=1,公差d=2,则a3=(  )
A.1B.3C.5D.7

分析 等差数列{an}中,an=an-1+d,由此利用a2=1,公差d=2,能求出a3

解答 解:等差数列{an}中,
∵a2=1,公差d=2,
∴a3=a2+d=1+2=3.
故选B.

点评 本题考查等差数列的性质和应用,是基础题.解题时要认真审题,仔细解答,注意等差数列通项公式的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点为F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段A,B的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn满足:Sn=$\frac{3}{2}$an+n-3.
(1)求证:数列{an-1}是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(ax2+(1-3a)x+2a-1),解答下列问题:
(Ⅰ)当a=-1时,写出函数f(x)的单调递增区间(不要求过程,只要写出结果即可);
(Ⅱ)讨论f(x)的定义域;
(Ⅲ)若对于任意的实数$t∈({\frac{1}{2},1})$,f(|x|)=t都有四个不同的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠BAC=120°,AB=2,AC=1,P是BC边上的一点,则${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范围是(  )
A.$[\frac{1}{4},3]$B.$[\frac{1}{2},5]$C.$[\frac{13}{4},5]$D.$[-\frac{27}{4},-5]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{{\begin{array}{l}{lg|x-2|}&{(x≠2)}\\ 1&{(x=2)}\end{array}}\right.$,若g(x)=[f(x)]2+bf(x)+c(其中b,c为常数)恰有5个不同的零点x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)=(  )
A.3lg2B.2lg2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在(1+x)+(1+x)2+(1+x)3+…+(1+x)2011的展开式中,含x3的项的系数为(  )
A.$C_{2011}^3$B.$C_{2011}^4$C.$C_{2012}^3$D.$C_{2012}^4$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若不等式ax2+5x-2>0的解集是$\left\{{\left.x\right|\frac{2}{3}<x<1}\right\}$,
(1)求a的值;
(2)求不等式ax2-5x-1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案