精英家教网 > 高中数学 > 题目详情
17.求过点P$(2,2\sqrt{3})$的圆x2+y2=4的切线的方程.

分析 当切线方程的斜率不存在时,显然x=2满足题意,当切线方程的斜率存在时,设斜率为k,利用点到直线的距离公式表示出圆心到切线的距离d,根据d=r列出关于k的方程,解之即可求出过点M的圆的切线方程.

解答 解:(1)当斜率存在时,设切线方程为$y-2\sqrt{3}=k(x-2)$,
即$kx-y-2k+2\sqrt{3}=0$(2分)
d=2,$\frac{{|-2k+2\sqrt{3}|}}{{\sqrt{{k^2}+1}}}=2$,(3分)
得$k=\frac{{\sqrt{3}}}{3}$,(4分)
∴切线方程为$x-\sqrt{3}y+4=0$,(5分)      
(2)当斜率不存在时,切线方程为x=2(7分)
总之,切线方程为$x-\sqrt{3}y+4=0$和 x=2.

点评 本题主要考查了直线与圆的位置关系,考查切线方程的求解,考查分类讨论的数学思想,同时考查了运算求解的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]•{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知过抛物线x2=4y的对称轴上一点P(0,m)(m>0)作直线l,l与抛物线交于A、B两点.
(1)若角∠AOB为钝角(O为坐标原点),求实数m的取值范围;
(2)若P为抛物线的焦点,过点P且与l垂直的直线l′与与抛物线交于C、D两点,设AB、CD的中点分别为M、N.求证:直线MN必过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn满足:Sn=$\frac{3}{2}$an+n-3.
(1)求证:数列{an-1}是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出下列程序,输入x=2,y=3,则输出(  )
A.2,3B.2,2C.3,3D.3,2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(ax2+(1-3a)x+2a-1),解答下列问题:
(Ⅰ)当a=-1时,写出函数f(x)的单调递增区间(不要求过程,只要写出结果即可);
(Ⅱ)讨论f(x)的定义域;
(Ⅲ)若对于任意的实数$t∈({\frac{1}{2},1})$,f(|x|)=t都有四个不同的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠BAC=120°,AB=2,AC=1,P是BC边上的一点,则${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范围是(  )
A.$[\frac{1}{4},3]$B.$[\frac{1}{2},5]$C.$[\frac{13}{4},5]$D.$[-\frac{27}{4},-5]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在(1+x)+(1+x)2+(1+x)3+…+(1+x)2011的展开式中,含x3的项的系数为(  )
A.$C_{2011}^3$B.$C_{2011}^4$C.$C_{2012}^3$D.$C_{2012}^4$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,都有$\frac{|PB|}{|PA|}$为常数?若存在,试求所有满足条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案