分析 先化简f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化简f(x)<g(x),再分类讨论:①当x∈[0,1)时,②当x∈[1,2)时③当x∈[2,3)时,从而得出f(x)<g(x)在0≤x≤k时的解集的长度,依题意即可求得k的值.
解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1,
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1,
当x∈[0,1)时,[x]=0,上式可化为x>1,
∴x∈∅;
当x∈[1,2)时,[x]=1,上式可化为0>0,
∴x∈∅;
当x∈[2,3)时,[x]=2,[x]-1>0,上式可化为x<[x]+1=3,
∴当x∈[0,3)时,不等式f(x)<g(x)解集区间的长度为d=3-2=1;
同理可得,当x∈[3,4)时,不等式f(x)<g(x)解集区间的长度为d=4-2=2;
∵不等式f(x)<g(x)解集区间的长度为5,
∴k-2=5,
∴k=7.
故答案为:7.
点评 本题主要考查了抽象函数及其应用,同时考查了创新能力,以及分类讨论的思想和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 36πcm2 | B. | 25πcm2 | C. | 16πcm2 | D. | 9πcm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x+1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=|x|,g(x)=($\sqrt{x}$)2 | ||
| C. | f(x)=2log2x,g(x)=log2x2 | D. | f(x)=x,g(x)=log22x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com