精英家教网 > 高中数学 > 题目详情
13.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积是(  )
A.36πcm2B.25πcm2C.16πcm2D.9πcm2

分析 首先由三视图还原几何体,得到其外接球半径,根据求的表面积公式求值.

解答 解:三视图表示的几何体为三棱锥D-ABC,且四个面为直角三角形;其中AD⊥平面ABC,底面ABC为等腰直角三角形,其斜边长为4,BC⊥平面ABD,取CD中点O,因为△ACD和△BCD为公用斜边CD的直角三角形,那么OA=$\frac{1}{2}$CD=OC=OD=OB,故三棱锥D-ABC的外接球心为O
在Rt△DAC中,CD=$\sqrt{A{D}^{2}+A{C}^{2}}$=5,R2=($\frac{5}{2}$)2=$\frac{25}{4}$
则三棱锥外接球的表面积为4πR2=25πcm2
故选B.

点评 本题考查了由几何体的三视图求几何体外接球表面积;关键是正确还原几何体,求出外接球的半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex(x+a)-x2+bx,曲线y=f(x)在点(0,f(0))处的切线方程为y=x-2.
(1)求a,b的值;
(2)求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆C的圆心在直线y=3x上,且圆C与x轴相切,若圆C截直线y=x得弦长为2$\sqrt{7}$,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=5${\;}^{\frac{1}{x-1}}$+$\sqrt{2-x}$的定义域为(  )
A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x≤2且x≠1}D.{x|x≥0且x≠1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2α,α∈A},则集合∁U(A∪B)=(  )
A.{2,4}B.{1,3,5}C.{1,2,4}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知平面内三点A(3,0)、B(2,2)、C(5,-4),则向量$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=2${\;}^{-\frac{1}{2}}$,b=log2$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.学校对高中三个年级的学生进行调查,其中高一有100名学生,高二有200名学生,高三有300名学生,现学生处欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是(  )
A.高一学生被抽到的概率最大B.高三学生被抽到的概率最大
C.高三学生被抽到的概率最小D.每名学生被抽到的概率相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]•{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为7.

查看答案和解析>>

同步练习册答案