分析 设出圆的方程,利用已知条件,推出2r2=(a-b)2+14①,r2=b2②,3a-b=0③解出a,b,r即可得到圆的方程.
解答 解:设所求的圆的方程是(x-a)2+(y-b)2=r2,
则圆心(a,b)到直线x-y=0的距离为$\frac{|a-b|}{\sqrt{2}}$,∴${r}^{2}=(\frac{|a-b|}{\sqrt{2}})^{2}+(\sqrt{7})^{2}$
即2r2=(a-b)2+14①(2分)
由于所求的圆与x轴相切,∴r2=b2②(4分)
又圆心在直线3x-y=0上,∴3a-b=0③(6分)
联立①②③,解得a=1,b=3,r2=9或a=-1,b=3,r2=9(10分)
故所求的圆的方程是:(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9(12分)
点评 本题是基础题,考查圆的方程的求法,标准方程的应用,灵活设出圆的方程是关键,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)在(-∞,-1)上单调递增 | |
| B. | 函数f(x)在(-∞,-1)上单调递减 | |
| C. | 若b=-6,则函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10 | |
| D. | 若b=0,则函数f(x)的图象与直线y=10只有一个公共点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36πcm2 | B. | 25πcm2 | C. | 16πcm2 | D. | 9πcm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x+1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=|x|,g(x)=($\sqrt{x}$)2 | ||
| C. | f(x)=2log2x,g(x)=log2x2 | D. | f(x)=x,g(x)=log22x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com