分析 (1)由a1=2,an+1=an2-nan+1(n≥2),代入n=2,3,4计算,可求a2,a3,a4的值;
(2)猜想{an}的通项公式,再用数学归纳法证明,关键是假设当n=k(k≥1)时,命题成立,即成立,利用递推式,证明当n=k+1时,等式成立.
(3)利用放缩法和裂项求和法即可证明.
解答 解:(1)由a1=2,得${a_2}={a_1}^2-{a_1}+1=3$,
${a_3}={a_2}^2-2{a_2}+1=4$,a4=5.
(2)由此猜想{an}的一个通项公式:an=n+1(n≥1).
下面用数学归纳法证明如下:
①当n=1时,a1=2=1+1,等式成立.
②假设当n=k时等式成立,即ak=k+1,那么${a_{k+1}}={a_k}^2-k{a_k}+1={(k+1)^2}-k(k+1)+1=k+2=(k+1)+1$,
也就是说,当n=k+1时,ak+1=(k+1)+1也成立.
根据①②对于所有n≥1,有an=n+1.
证明:(3)∵${b_n}=\frac{1}{a_n^2}=\frac{1}{{{{(n+1)}^2}}}<\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{n}^{2}}$+$\frac{1}{(n+1)^{2}}$<$\frac{1}{{2}^{2}}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n-1)}$+$\frac{1}{n(n+1)}$=$\frac{1}{4}$+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)+($\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{4}$+$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{3}{4}$
点评 本题考查数列的通项,考查归纳猜想,考查数学归纳法的运用,放缩法和裂项求和法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $C_{2011}^3$ | B. | $C_{2011}^4$ | C. | $C_{2012}^3$ | D. | $C_{2012}^4$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cos45°cos15°+sin45°sin15° | B. | $\sqrt{\frac{{1-cos\frac{π}{6}}}{2}}$ | ||
| C. | cos2$\frac{π}{12}$-sin2$\frac{π}{12}$ | D. | $\frac{{tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-∞,-1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (-∞,0) | C. | $({\frac{1}{3},1})$ | D. | (2.+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com