精英家教网 > 高中数学 > 题目详情
2.已知:三棱锥A-BCD中,平面ABD⊥平面BCD,AB⊥AD,E,F分别为BD,AD的中点.
(1)求证:EF∥平面ABC;
(2)若CB=CD,求证:AD⊥平面CEF.

分析 1)由EF∥AB,可得EF∥平面ABC
(2)只需证明CE⊥AD,AD⊥EF,即可得AD⊥平面CEF.

解答 证:(1)∵E,F分别为BD,AD的中点
∴EF∥AB
∵EF?平面ABC,AB?平面ABC
∴EF∥平面ABC
(2)∵CB=CD,E为BD的中点
∴CE⊥DB
∵平面ADB⊥平面BCD,平面ABD∩平面BCD=BD,CE?平面BCD,
∴CE⊥平面ABD
∵AD?平面ABD,∴CE⊥AD
∵EF∥AB,AB⊥AD∴AD⊥EF…(11分)
∵CE?平面CEF,EF?平面CEF,CE∩EF=E
∴AD⊥平面CEF.

点评 本题考查了空间线面平行,线面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-4x≤0,x∈Z},B={y|y=m2,m∈A},则A∩B=(  )
A.{0,1,4}B.{0,1,6}C.{0,2,4}D.{0,4,16}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,半圆O的半径为1,A为直径延长线上一点,OA=2,B为半圆上任意一点,以AB为一边做等边三角形ABC,设∠AOB=θ.
(1)当$θ=\frac{π}{3}$时,求四边形OACB的面积;
(2)求线段OC长度的最大值,并指出此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-1,2).
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一组数据:10.1,9.8,10,x,10.2的平均数为10,则该组数据的方差为0.02.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)和抛物线y2=8x有相同的焦点,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x∈Z|x≥10},集合B是集合A的子集,且B中的元素满足:
①任意一个元素的各数位上的数字互不相同;
②任意一个元素的任意两个数位的数字之和不等于9.问
(1)集合B中两位数和三位数各有多少个?
(2)集合B中是否有五位数?是否有六位数?
(3)将集合B中的元素从小到大排列,求第1081个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(-3,4)为角α终边上一点
(1)求sinα-2cosα的值;
(2)化简并求值$f(α)=\frac{{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}}{{cos(\frac{π}{2}+α)sin(π+α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)计算$\root{3}{{{{(-4)}^3}}}-{(\frac{1}{2})^0}+{0.25^{\frac{1}{2}}}×{(\frac{-1}{{\sqrt{2}}})^{-4}}$
(2)已知二次函数的图象过三个点:A(0,7)、B(2,-1)、C(4,7),求这个二次函数的解析式.

查看答案和解析>>

同步练习册答案