精英家教网 > 高中数学 > 题目详情
一个正八面体的八个顶点都在同一个球面上,如果该正八面体的棱长为
2
.则这个球的表面积为(  )
A、π
B、2π
C、4π
D、
π
2
考点:球的体积和表面积
专题:综合题,空间位置关系与距离
分析:正八面体的各个顶点都在同一个球面上,则其中四点所组成的截面在球的一个大圆面上,可得,此四点组成的正方形是球的大圆的一个内接正方形,其对角线的长度即为球的直径,由此求出球的表面积.
解答: 解:由题意正八面体的各个顶点都在同一个球面上,则其中四点所组成的截面在球的一个大圆面上,
因为正八面体的棱长为
2

所以底面四点组成的正方形的对角线的长为2,球的半径是1
所以此球的表面积4π.
故选:C.
点评:本题考查球的表面积公式,解此题的关键是理解得出球的直径恰好是正八面体中间那个正方形的对角线的长度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平行四边形ABCD中,∠CBA=120°,AD=4,对角线BD=2
3
,将其沿对角线折起,使面ABD⊥面BCD,若四面体ABCD定点在同一个球面上,则该球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一圆的六个等分点分成两组相间的三点﹐它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星﹐如图所示的正六角星是以原点O为中心﹐其中
x
y
分别为原点O到两个顶点的向量﹒若将原点O到正六角星12个顶点的向量﹐都写成为a
x
+b
y
的形式﹐则a+b的最大值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(0<φ<π)的图象的一条对称轴是x=
π
6

(1)求φ的值及f(x)在区间[0,
π
2
]
上的最大值和最小值;
(2)若f(α)=
4
5
α∈[
π
4
π
2
]
,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|2x-1|≥5的解为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCDEFGH材料切割成三棱锥HACF.

(1)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(2)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx+1和双曲线3x2-y2=1相交于两点A,B.
(1)求实数k的取值范围;
(2)是否存在实数k,使得以AB为直径的圆恰好过原点?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(x+
π
6
)在(0,2π)上的图象与x轴的交点的横坐标为(  )
A、-
π
6
11π
6
B、
π
6
6
C、
6
11π
6
D、
π
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=-
3
x绕原点按逆时针方向旋转90°后所得直线与圆(x-2)2+y2=1的位置关系是(  )
A、直线过圆心
B、直线与圆相交,但不过圆心
C、直线与圆相切
D、直线与圆没有公共点

查看答案和解析>>

同步练习册答案