精英家教网 > 高中数学 > 题目详情
已知直线y=kx+1和双曲线3x2-y2=1相交于两点A,B.
(1)求实数k的取值范围;
(2)是否存在实数k,使得以AB为直径的圆恰好过原点?若存在,求出k的值;若不存在,请说明理由.
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)联立直线y=kx+1与双曲线3x2-y2=1可得(3-k2)x2-2kx-2=0,由△>0,且3-k2≠0,解得即为k的范围;
(2)假设存在,则设A(x1,y1)、B(x2,y2),依题意,x1x2+y1y2=0,利用韦达定理可得x1+x2=
-2k
k2-3
,x1x2=
2
k2-3
,从而可求得
2
k2-3
+1=0,继而可解得k的值.检验成立.
解答: 解:(1)由
y=kx+1
3x2-y2=1
,得(3-k2)x2-2kx-2=0,
由△>0,且3-k2≠0,
得-
6
<k<
6
,且k≠±
3

(2)假设存在实数k,使得以AB为直径的圆恰好过原点.
设A(x1,y1)、B(x2,y2),
因为以AB为直径的圆过原点,所以OA⊥OB,
所以x1x2+y1y2=0,又x1+x2=
-2k
k2-3
,x1x2=
2
k2-3

∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,
∴k2x1x2+k(x1+x2)+1+x1x2=0,
2k2
k2-3
+
-2k2
k2-3
+1+
2
k2-3
=0,
2
k2-3
+1=0,解得k=±1.
经检验,k=±1满足题目条件,
则存在实数k,使得以AB为直径的圆恰好过原点.
点评:本题考查双曲线的标准方程和性质,着重考查直线与圆锥曲线的位置关系,突出考查韦达定理的应用,考查转化思想与综合运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、一个平面的面积可以是16cm2
B、空间三点可以确定一个平面
C、平面α与平面β相交于线段AB
D、两条相交直线可以确定一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:

一个长方体,其正视图面积为
6
,侧视图面积为
3
,俯视图面积为
2
,则长方体的外接球的表面积为(  )
A、6π
B、24π
C、6
6
π
D、
6
π

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正八面体的八个顶点都在同一个球面上,如果该正八面体的棱长为
2
.则这个球的表面积为(  )
A、π
B、2π
C、4π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列流程图的绘制是否符合规则,并说明原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,1)时,函数f(x)=
1+2x2
2x
1-x2
的最小值为b,若定义在R上的函数g(x)满足:对任意m,n∈R都有g(m+n)=g(m)+g(n)+b,则下列结论正确的是(  )
A、g(x)-1是奇函数
B、g(x)+1是奇函数
C、g(x)-
3
是奇函数
D、g(x)-
3
是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆:C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(  )
A、(x-2)2+(y-2)2=1
B、(x+2)2+(y+2)2=1
C、(x+2)2+(y-2)2=1
D、(x-2)2+(y+2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1-3x)n展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项的项数及二项式系数最大的项的项数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M(x,y)与定点F(
P
2
,0)(P>0)和定直线x=-
P
2
得距离相等,
(1)求动点M的轨迹C的方程;
(2)设M,N是轨迹C上异于原点O的两个不同点,直线OM和ON的倾斜角分别为α和β,当α+β=90°时,求证:直线MN恒过一定点.

查看答案和解析>>

同步练习册答案