精英家教网 > 高中数学 > 题目详情
(2013•汕头二模)已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=5,a1>b1,a1,b1∈N*(n∈N*),则数列{abn}前10项的和等于(  )
分析:根据a1+b1=5,a1,b1∈N*,故可知a1,b1有3和2,4和1两种可能,又知数列{an},{bn}都是公差为1的等差数列,即可求出ab1,再根据等差数列的求和公式即可求出数列{abn}的前10项和.
解答:解:∵a1+b1=5,a1,b1∈N*,a1>b1,a1,b1∈N*(n∈N*),
∴a1,b1有3和2,4和1两种可能,
当a1,b1为4和1的时,ab1=4,前10项和为4+5+…+12+13=85;
当a1,b1为3和2的时,ab1=4,前10项和为4+5+…+12+13=85;
故数列{abn}的前10项和等于85,
故选C.
点评:本题主要考查数列求和和等差数列的性质的知识点,解答本题的关键是对a1+b1=5进行两种可能分类,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•汕头二模)已知i为虚数单位,若复数(1+ai)(2+i)是纯虚数,则实数a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)执行框图,若输出结果为
1
2
,则输入的实数x的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)数列{an}的首项为3,{bn}为等差数列,已知b1=2,b3=6,bn=an+l-an(n∈N*),则a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽
4
2
4
2
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)已知集合A={1,2},B={x∈Z|x2-5x+4<0},则A∩B=(  )

查看答案和解析>>

同步练习册答案