精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$,$\overrightarrow{b}$均是非零向量,设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,是否存在这样的θ,使|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-$\overrightarrow{b}$|成立?,若存在,求θ的值,若不存在,请说明理由.

分析 假设存在这样的θ,使|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-$\overrightarrow{b}$|成立,可得$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{3}$$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}}$,化简整理即可得出.

解答 解:假设存在这样的θ,使|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-$\overrightarrow{b}$|成立,
∴$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{3}$$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}}$,
化为${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$=0,
∴cosθ=$\frac{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}}{4|\overrightarrow{a}||\overrightarrow{b}|}$≥$\frac{2|\overrightarrow{a}||\overrightarrow{b}|}{4|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{1}{2}$,
∴θ∈$[0,\frac{π}{3}]$.

点评 本题考查了向量的数量积运算性质、向量夹角公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax2+8x+3(a<0),对于给定的负数a,有一个最大的正数l(a),使得在区间[0,l(a)]上,不等式|f(x)|≤5都成立,求l(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,若a2+b2=2c2
(1)求∠C的最大值;
(2)当∠C最大时,△ABC是什么形状的三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a∈R,二次函数f(x)=ax2-2x-2a,设A={x|f(x)>0}.
(1)当a=3时,求A;
(2)若集合B={x|1<x<3},且A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a为常数,且a>1,0≤x≤2π,求函数f(x)=cos2x+2asinx-1的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(cosα,sinα),|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是一个算法的程序框图,若输入的x的值为2,则输出的y的值是(  )
A.0B.-1C.-$\frac{3}{2}$D.-$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.P是平行四边形ABCD所在平面外一点,Q是PA中点,对角线AC与BD相交于点O,求证:PC∥平面BDQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(f(f(x)))=27x+13,求函数f(x)的解析式f(x)=3x+1.

查看答案和解析>>

同步练习册答案