精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=-x3+2ex2-x2+mx-e2(x>0),若f(x)=0有两个相异实根,则实数m的取值范围是(  )
A.(-e2+2e,0)B.(-e2+2e,+∞)C.(0,e2-2e)D.(-∞,-e2+2e)

第Ⅱ卷

分析 条件可化为方程m=x2-2ex+x+$\frac{{e}^{2}}{x}$有2个不等实数根,即直线y=m 和函数y=x2-2ex+x+$\frac{{e}^{2}}{x}$的图象在(0,+∞)上有两个不同的交点.利用导数求得m的最小值为m(e)=2e-e2,可得m的范围.

解答 解:∵x>0,函数f(x)=-x3+2ex2-x2+mx-e2 =mx-(x3-2ex2+x2+e2 ),
若f(x)=0有两个相异实根,则 mx=(x3-2ex2+x2+e2 )在(0,+∞)上有2个不等实数根,
即m=x2-2ex+x+$\frac{{e}^{2}}{x}$有2个不等实数根,
即直线y=m 和函数y=x2-2ex+x+$\frac{{e}^{2}}{x}$的图象在(0,+∞)上有两个不同的交点.
由于 m′=$\frac{(x-e)•({2x}^{2}+x_e)}{{x}^{2}}$,故在(0,e)上,m′<0,∴m=x2-2ex+x+$\frac{{e}^{2}}{x}$在(0,e)上是减函数,
在(e,+∞)上,m′>0,m=x2-2ex+x+$\frac{{e}^{2}}{x}$在(e+∞)上是增函数,故m的最小值为m(e)=2e-e2
若使f(x)=0有两个相异实根,则m>-e2+2e.

点评 本题考查了导数的综合应用及函数的零点的判断,方程根的存在性以及个数判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{1}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则D1到底面ABCD的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+x+\frac{7}{4},x∈[0,\frac{1}{2}]\\{x^3}+ln(\sqrt{3}e-x),x∈(\frac{1}{2},\frac{7}{4})\\-x+2,x∈[\frac{7}{4},2]\end{array}$,若${x_1}∈[0.\frac{1}{2}]$,x2=f(x1),x1=f(x2),则x1=(  )
A.$\frac{{2-\sqrt{3}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}-1}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}与{bn}满足:a1=1,bnan+an+1+bn+1an+2=0,bn=$\frac{{3+{{(-1)}^n}}}{2}$且anbn+1+an+1bn=1+(-2)n,n∈N*
(Ⅰ)求a2,a3的值;
(Ⅱ)令ck=a2k+1-a2k-1,k∈N*,试判断:$\frac{{{C_{k+1}}}}{C_k}$是否对于同一个常数;若是,求出这个常数,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在三棱锥A-BCD中,DA,DB,DC两两垂直,且DB=DC,E为BC中点,则$\overrightarrow{AE}•\overrightarrow{BC}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanθ=2,则$sin(\frac{π}{2}+2θ)$的值为$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}是等差数列,a1=1,a3=5,则公差d等于(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{a}$+$\overrightarrow{b}$=(x,-1).若$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=2$\sqrt{10}$.

查看答案和解析>>

同步练习册答案