分析 (Ⅰ)根据数列的通项公式和递推公式即可求出,
(Ⅱ)根据递推公式求出数列的通项公式,即可得$\frac{{c}_{k+1}}{{c}_{k}}$=4
解答 解:(I):由${b_n}=\frac{{3+{{(-1)}^n}}}{2},n∈{N^*}$,可得${b_n}=\left\{\begin{array}{l}1,n为奇数\\ 2,n为偶数\end{array}\right.$…1分
又${a_n}{b_{n+1}}+{a_{n+1}}{b_n}=1+{(-2)^n}$,a1=1
当n=1时,a1b2+a2b1=-1,得a2=-3…3分
当n=2时,a2b3+a3b2=5,得a3=4…5分
(II)证明:${a_n}{b_{n+1}}+{a_{n+1}}{b_n}=1+{(-2)^n}$,n∈N*,
∴令n=2k-1(k∈N*),则$2{a_{2k-1}}+{a_{2k}}=1+{(-2)^{2k-1}}$①…7分
令n=2k(k∈N*),则${a_{2k}}+2{a_{2k+1}}=1+{(-2)^{2k}}$②…9分
由①②得${a_{2k+1}}-{a_{2k-1}}=3×{2^{2k-2}}$,即ck=3×22k-2
因此$\frac{{c}_{k+1}}{{c}_{k}}$=4,…12分.
点评 本题考查了通过数列的递推公式求出数列的通项公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x-2y+7=0 | B. | 2x-y+5=0 | C. | x-2y-5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 9 | C. | 81 | D. | $27\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-e2+2e,0) | B. | (-e2+2e,+∞) | C. | (0,e2-2e) | D. | (-∞,-e2+2e) 第Ⅱ卷 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com