精英家教网 > 高中数学 > 题目详情
10.已知实数x,y满足$\left\{\begin{array}{l}2x-y+1≤0\\ x-2y-1≥0\end{array}$,则z=27-x•$\frac{1}{{3}^{y}}$的最小值为(  )
A.$\sqrt{3}$B.9C.81D.$27\sqrt{3}$

分析 作出满足约束条件$\left\{\begin{array}{l}2x-y+1≤0\\ x-2y-1≥0\end{array}$的可行域,数形结合,再由指数函数的图象和性质,可得z=27-x•$\frac{1}{{3}^{y}}$的最小值.

解答 解:作出满足约束条件$\left\{\begin{array}{l}2x-y+1≤0\\ x-2y-1≥0\end{array}$的可行域如下图所示:

其中P点坐标为(-1,-1),
由z=27-x•$\frac{1}{{3}^{y}}$=3-3x-y
令t=-3x-y,
则当直线t=-3x-y过P点时,t取最小值-4,
此时z=27-x•$\frac{1}{{3}^{y}}$的最小值为81,
故选:C

点评 本题考查的知识点是简单的线性规划,指数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=$\frac{4}{3}$.
(1)当点M与A重合时,求圆形保护区的面积;
(2)若古桥两端O和A到该圆上任意一点的距离均不少于80m.当OM多长时,点M到直线BC的距离最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,以A为原点建立空间直角坐标系A-xyz后,B(3,0,0),D(0,4,0),A1(0,0,5),E(3,3,3),一质点从A点出发,沿直线向E点运动,然后会依次被长方体ABCD-A1B1C1D1的各个面反弹(符合反射定律),
反弹点依次记为E、F、G、…,
(Ⅰ) 求反弹点F的坐标;
(Ⅱ) 求质点到达第三个反弹点G时的运动距离;
(Ⅲ) 试判断直线AE与直线FG的位置关系并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则D1到底面ABCD的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点Q(5,4),若动点P(x,y)满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{x+y-2≤0}\\{y-1≥0}\end{array}\right.$,则|PQ|的最小值为(  )
A.$\frac{7\sqrt{2}}{2}$B.$\sqrt{29}$C.5D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+x+\frac{7}{4},x∈[0,\frac{1}{2}]\\{x^3}+ln(\sqrt{3}e-x),x∈(\frac{1}{2},\frac{7}{4})\\-x+2,x∈[\frac{7}{4},2]\end{array}$,若${x_1}∈[0.\frac{1}{2}]$,x2=f(x1),x1=f(x2),则x1=(  )
A.$\frac{{2-\sqrt{3}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}-1}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}与{bn}满足:a1=1,bnan+an+1+bn+1an+2=0,bn=$\frac{{3+{{(-1)}^n}}}{2}$且anbn+1+an+1bn=1+(-2)n,n∈N*
(Ⅰ)求a2,a3的值;
(Ⅱ)令ck=a2k+1-a2k-1,k∈N*,试判断:$\frac{{{C_{k+1}}}}{C_k}$是否对于同一个常数;若是,求出这个常数,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanθ=2,则$sin(\frac{π}{2}+2θ)$的值为$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2-x=0},集合N={x|x2-3x-4<0,x∈N*},则M∩N=(  )
A.{0,1}B.{l,2,3}C.{0}D.{1}

查看答案和解析>>

同步练习册答案