精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=cos2ωx-2cos2(ωx+$\frac{π}{4}$)(ω>0)的最小正周期T=π.
(Ⅰ)当$x∈[0,\frac{π}{2}]$时,求f(x)的值域;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(C)=0,acosB+bcosA=$\frac{1}{2}{c^2}$,a=$\sqrt{2}$,求b.

分析 (Ⅰ)将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求出ω,最后将内层函数看作整体,当$x∈[0,\frac{π}{2}]$时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值,即得到f(x)的值域.
(Ⅱ)利用f(C)=0求出角C的大小.在利用正弦定理可求b.

解答 解:(Ⅰ)函数f(x)=cos2ωx-2cos2(ωx+$\frac{π}{4}$)(ω>0)的化简可得:$f(x)=cos2ωx-[1+cos(2ωx+\frac{π}{2})]$=cos2ωx+sin2ωx-1=$\sqrt{2}sin(2ωx+\frac{π}{4})-1$.
∵函数f(x)的最小正周期T=π.
由$T=\frac{2π}{2ω}=π$,得ω=1,
∴$f(x)=\sqrt{2}sin(2x+\frac{π}{4})-1$,
当$x∈[0,\frac{π}{2}]$时,
$2x+\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$,
那么:$sin(2x+\frac{π}{4})∈[-\frac{{\sqrt{2}}}{2},1]$,
∴函数f(x)的值域为$[-2,\sqrt{2}-1]$.
(Ⅱ)由(Ⅰ)可得$f(x)=\sqrt{2}sin(2x+\frac{π}{4})-1$,
∵$f(C)=\sqrt{2}sin(2C+\frac{π}{4})-1=0$,
化简得:$sin(2C+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,
又∵0<C<π,
∴$2C+\frac{π}{4}=\frac{3π}{4}$,
∴$C=\frac{π}{4}$
∵$acosB+bcosA=\frac{1}{2}{c^2}$,
由正弦定理,得$sinAcosB+sinBcosA=\frac{1}{2}csinC$;
∴$sin(A+B)=\frac{1}{2}csinC$,即$sinC=\frac{1}{2}csinC$;
又sinC>0,∴c=2.
∴$sinA=\frac{asinC}{c}=\frac{{\sqrt{2}×\frac{{\sqrt{2}}}{2}}}{2}=\frac{1}{2}$
∵a<c,∴$0<A<\frac{π}{4}$,$A=\frac{π}{6}$
∴$b=\frac{asinB}{sinA}=\frac{{\sqrt{2}sin(\frac{π}{4}+\frac{π}{6})}}{{\frac{1}{2}}}=1+\sqrt{3}$.

点评 本题考查了三角函数的化简能力以及性质的运用计算能力,同时考查了正弦定理的运用能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.5a0.16
70.5~80.510b
80.5~90.5160.32
90.5~100.5cd
合计501
(1)求实数a,b,c,d的值;
(2)补全频数条形图;
(3)若成绩在85.5~100.5分的学生为一等奖,问获得一等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知角α的顶点与原点重合,始边与x轴非负半轴重合,而终边经过点P(1,2).
(1)求tanα的值;
(2)求$\frac{\sqrt{2}sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={0,1,2,3,4},B=$\left\{{\left.{x∈R|\frac{x-4}{x-1}≤0}\right\}}\right.$,则A∩B=(  )
A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数y=sin(4x-$\frac{π}{3}$)的图象上各点的横坐标伸长为原来的2倍,再向左平移$\frac{π}{6}$个单位,得到的函数的图象的一个对称中心为(  )
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,0)C.($\frac{π}{9}$,0)D.($\frac{π}{16}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:
①曲线C过点(-1,1);
②曲线C关于点(-1,1)对称;
③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;
④设P0为曲线C上任意一点,则点P0关于直线x=-1,点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值2k2
其中,所有正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>b>0,c<0,则(  )
A.一定存在正数d,使得b-a<c-dB.一定存在正数d,使得a-c<b-d
C.对任意的正数d,有$\frac{1}{a}$-$\frac{1}{b}$<$\frac{1}{d}$-$\frac{1}{c}$D.对任意的正数d,有ad>bd>cd

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义函数f(x)={x•{x}},其中{x}表示不小于x的最小整数,如{1.2}=2,{-2.6}=-2.当x∈(0,n](n∈N*)时,函数f(x)的值域记为An,记An中元素的个数为an,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{10}}}}$=$\frac{20}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若2a=5b=10,则$\frac{a+b}{ab}$等于1.

查看答案和解析>>

同步练习册答案