精英家教网 > 高中数学 > 题目详情
15.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:
①曲线C过点(-1,1);
②曲线C关于点(-1,1)对称;
③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;
④设P0为曲线C上任意一点,则点P0关于直线x=-1,点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值2k2
其中,所有正确结论的序号是②③.

分析 由题意曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.

解答 解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y-1|=k2
对于①,将(-1,1)代入验证,此方程不过此点,所以①错;
对于②,把方程中的x被-2-x代换,y被2-y 代换,方程不变,故此曲线关于(-1,1)对称.所以②正确;
对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y-1|
∴|PA|+|PB|≥2$\sqrt{|PA||PB|}$=2k,所以③正确;
对于④,由题意知点P在曲线C上,根据对称性,
则四边形P0P1P2P3的面积=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④正确.
故答案为:②③④.

点评 此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数y=|f($\frac{3π}{4}$-x)|是(  )
A.奇函数且它的图象关于点(π,0)对称
B.奇函数且它的图象关于点($\frac{3π}{4}$,0)对称
C.偶函数且它的图象关于直线x=π对称
D.偶函数且它的图象关于直线x=$\frac{3π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知空间四边形ABCD,连接AC,BD,设M,G分别是BC,CD的中点,化简下列各表达式:
(1)$\overrightarrow{AB}+\frac{1}{2}(\overrightarrow{BD}+\overrightarrow{BC})$
(2)$\overrightarrow{AD}-\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,已知正方体(图1)面对角线长为a,沿对角面将其切割成两块,拼成图2所示的几何体,那么拼成后的几何体的全面积为$({2+\sqrt{2}}){a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=cos2ωx-2cos2(ωx+$\frac{π}{4}$)(ω>0)的最小正周期T=π.
(Ⅰ)当$x∈[0,\frac{π}{2}]$时,求f(x)的值域;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(C)=0,acosB+bcosA=$\frac{1}{2}{c^2}$,a=$\sqrt{2}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知关于x的不等式ax+b>0的解集是(1,+∞),则关于x的不等式$\frac{ax-b}{x-2}$>0的解集是(  )
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}{{4}^{x},(x≤0)}\\{|lo{g}_{4}x|,(x>0)}\end{array}\right.$,则方程f(x)=$\frac{1}{4}$的解集为{-1,$\frac{\sqrt{2}}{2}$,$\sqrt{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一种掷硬币走跳棋的游戏:棋盘上有第0、1、2、…、100,共101点,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束,已知硬币出现正、反面的概率相同,设棋子跳到第n站时的概率为Pn
(1)求P1、P2、P3
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则必有(  )
A.f(0)>f(1)B.f(-1)<f(-3)C.f(-1)<f(1)D.f(-3)>f(-5)

查看答案和解析>>

同步练习册答案