分析 由题意曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.
解答 解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y-1|=k2,
对于①,将(-1,1)代入验证,此方程不过此点,所以①错;
对于②,把方程中的x被-2-x代换,y被2-y 代换,方程不变,故此曲线关于(-1,1)对称.所以②正确;
对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y-1|
∴|PA|+|PB|≥2$\sqrt{|PA||PB|}$=2k,所以③正确;
对于④,由题意知点P在曲线C上,根据对称性,
则四边形P0P1P2P3的面积=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④正确.
故答案为:②③④.
点评 此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 奇函数且它的图象关于点(π,0)对称 | |
| B. | 奇函数且它的图象关于点($\frac{3π}{4}$,0)对称 | |
| C. | 偶函数且它的图象关于直线x=π对称 | |
| D. | 偶函数且它的图象关于直线x=$\frac{3π}{4}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(0)>f(1) | B. | f(-1)<f(-3) | C. | f(-1)<f(1) | D. | f(-3)>f(-5) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com