精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<1}\\{{x}^{\frac{1}{3}},x≥1}\end{array}\right.$则使得f(x)≤e成立的x的取值范围是(-∞,e3].

分析 原题等价于$\left\{\begin{array}{l}{{e}^{x-1}≤e}\\{x<1}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{\frac{1}{3}}≤e}\\{x≥1}\end{array}\right.$,由此能求出x的取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<1}\\{{x}^{\frac{1}{3}},x≥1}\end{array}\right.$,f(x)≤e,
∴$\left\{\begin{array}{l}{{e}^{x-1}≤e}\\{x<1}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{\frac{1}{3}}≤e}\\{x≥1}\end{array}\right.$,
解得x<1或1≤x≤e3
∴x的取值范围是(-∞,e3].
故答案为:(-∞,e3].

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.给出以下命题,正确命题的序号为①②③.
①(m-1)(a-1)>0是logam>0的必要不充分条件.
②双曲线$\frac{y^2}{2}$-x2=1的渐近线方程为y=±$\sqrt{2}$x;
③已知线性回归方程为$\stackrel{∧}{y}$=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,AD是半径为5的半圆O的直径,B,C是半圆O上的两点,cos∠AOB=$\frac{4}{5}$,AB=BC,
(Ⅰ)求cos∠ABC的值
(Ⅱ)求$\overrightarrow{BA}•\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如表是x和y之间的一组数据,则y关于x的回归直线方程必过(  )
x1234
y1357
A.点(2,3)B.点(3,5)C.点(2.5,4)D.点(2.5,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前n项和为Sn,且S10=${∫}_{0}^{4}$(1+2x)dx,则a5+a6=(  )
A.4B.8C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司招聘员工,连续招聘三天,应聘人数和录用人数符合函数关系y=$\left\{\begin{array}{l}4x,1≤x≤10\\ 2x+10,10<x≤100\\ 1.5x,x>100\end{array}\right.$,其中,x是录用人数,y是应聘人数.若第一天录用9人,第二天应聘人数为60,第三天未被录用的人数为120.求这三天参加应聘的总人数和录用总人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若代数式$\frac{(x+1)(3-x)}{{x}^{2}+1}$的值非负,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若不等式(1-|x|)(x+1)>0的解集设为A.
(1)求集合A;
(2)已知不等式|x|<1的解集为B,判断集合A、B的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=4x2+$\frac{9}{{x}^{2}}$取最小值时x的值为$±\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案