精英家教网 > 高中数学 > 题目详情
10.函数y=|tanx|的对称轴是x=$\frac{π}{2}k$,k∈Z.

分析 根据正切函数的图象及性质,y=|tanx|的图象是y=tanx把x轴的下部分翻折到x轴的上方可得到的直接得答案.

解答 解:函数y=|tanx|的图象是y=tanx把x轴的下部分翻折到x轴的上方可得到的.
∴函数y=|tanx|的对称轴是x=$\frac{π}{2}k$,k∈Z.
故答案为:x=$\frac{π}{2}k$,k∈Z.

点评 本题考查了y=|tanx|的图象与y=tanx图象的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lg(x2+ax+b)的定义域为A,$g(x)=\sqrt{k{x^2}+4x+k+3}$的定义域为B.
(1)若B=R,求k的取值范围;
(2)若(∁RA)∩B=B,(∁RA)∪B={x|-2≤x≤3},求实数a,b的值及实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要得到y=sinx的图象只需将$y=sin(\frac{x}{2}+\frac{π}{3})$的图象(  )
A.先向左平移$\frac{2π}{3}$单位,再将图象上各点的横坐标缩短至原来的$\frac{1}{2}$
B.先向右平移$\frac{2π}{3}$单位,再将图象上各点的横坐标缩短至原来的$\frac{1}{2}$
C.先将图象上各点的横坐标缩短至原来的$\frac{1}{2}$,再将图象向左平移$\frac{π}{3}$单位
D.先将图象上各点横坐标扩大为原来的2倍,再将图象向右平移$\frac{π}{3}$单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若无穷数列{an}满足:?k∈N*,对于$?n≥{n_0}({n_0}∈{N^*})$,都有an+k-an=d(其中d为常数),则称{an}具有性质“P(k,n0,d)”.
(Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn,判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N*,i<j,i,j互质,求证:{an}具有性质“$P(j-i,i+2,\frac{j-i}{i}{d_1})$”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.$\frac{4}{3}π$B.$\frac{{32\sqrt{3}}}{27}π$C.$\frac{{28\sqrt{3}}}{27}π$D.$\frac{{28\sqrt{21}}}{27}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从一批含有11只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)的值为(  )
A.$\frac{42}{13}$B.$\frac{12}{13}$C.$\frac{41}{11}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且A=30°,B=15°,a=3,则c的值为(  )
A.6B.$\frac{3}{2}$C.3$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$y=acos(2x+\frac{π}{3})+3$,$x∈[0,\frac{π}{2}]$的最大值为4,则正实数a的值为2.

查看答案和解析>>

同步练习册答案