精英家教网 > 高中数学 > 题目详情
18.已知sina=$\frac{4\sqrt{3}}{7}$,cos(α+β)=-$\frac{11}{14}$,0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$.求cosβ

分析 由同角三角函数关系式先求出cosα和sin(α+β),再由余弦加法定理能求出cosβ.

解答 解:∵sina=$\frac{4\sqrt{3}}{7}$,cos(α+β)=-$\frac{11}{14}$,0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,
∴cosα=$\sqrt{1-(\frac{4\sqrt{3}}{7})^{2}}$=$\frac{1}{7}$,sin(α+β)=$\sqrt{1-(-\frac{11}{14})^{2}}$=$\frac{5\sqrt{5}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=-$\frac{11}{14}$×$\frac{1}{7}$+$\frac{5\sqrt{5}}{14}$×$\frac{4\sqrt{3}}{7}$
=$\frac{20\sqrt{15}-11}{98}$.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式和余弦加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{|ln(x-1)|+3,x>1}\\{-{x}^{2}-2x+1,x≤1}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+3b-2=0有4个不同的实数根,则实数b的取值范围是(-$\frac{2}{5}$,6-2$\sqrt{7}$)∪[-2,-$\frac{7}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点A(λ+1,μ-1,3),B(2λ,μ,λ-2μ),C(λ+3,μ-3,9)三点共线,则实数λ+μ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)满足f(x+1)+f(1-x)=0,f(x+2)-f(2-x)=0且f($\frac{2}{3}$)=1,则f($\frac{1000}{3}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)对定义域内任意x满足f(2+x)=f(-x),数列{an}是公比不为1的正项等比数列,且f(lga5)=f(lga15),则a10=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l1:y=kx,l2:y=2x+3,若两直线垂直,则k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若sinα-sinβ=$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,则cos(α-β)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系XOY中,以原点O为极点,X轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ=1,曲线C2参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{5}cosθ}\\{y=2+\sqrt{5}sinθ}\end{array}\right.$(θ是参数).
(1)求曲线C1和C2的直角坐标系方程;
(2)若曲线C1和C2交于两点A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l的倾斜角为α,斜率为k,那么“$α>\frac{π}{3}$”是“$k>\sqrt{3}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案