精英家教网 > 高中数学 > 题目详情
已知:p:方程x2+mx+1=0有两个正实根;q:对任意的实数x都有mx2+mx+1>0恒成立;若“p∨q”为真命题,且“p∧¬q”是假命题,求实数m的取值范围.
【答案】分析:p:等价于,q:等价于m=0或,由“p∨q”为真命题,且“p∧¬q”是假命题,知p真q真或p假q真,由此能求出实数m的取值范围.
解答:解:p:等价于,解得m≤-2…(3分)
q:等价于m=0或,解得0≤m<4…(6分)
∵“p∨q”为真命题,且“p∧¬q”是假命题,∴p真q真或p假q真
若p真q真,m≤-2且0≤m<4,无解.…(9分)
若p假q真,m>-2且0≤m<4,解得0≤m<4.
故实数m的取值范围是[0,4).…(12分)
点评:本题考查命题的真假判断,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+ax+1=0有实数根,命题q:椭圆
x2
a2
+y2=1(a>1)
的离心率e>
2
2

(1)若命题p为真,求实数a的取值范围;
(2)若?p且q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“方程x2+
y2m
=1表示焦点在y轴上的椭圆”;命题Q:“方程2x2-4x+m=0没有实数根”.若P∧Q假,P∨Q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2-2mx+m=0没有实数根;
命题Q:?x∈R,x2+mx+1≥0.
(1)写出命题Q的否定“¬Q”;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+(m-3)x+1=0无实根,命题Q:方程x2+
y2m-1
=1
是焦点在y轴上的椭圆.若¬P与P∧Q同时为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+4x+m-1=0有两个不等的负根;命题q:方程4x2+4x+m-2=0无实根.若p,q两命题一真一假,求m的取值范围.

查看答案和解析>>

同步练习册答案