【题目】已知函数
,其中e为自然对数的底数.
(1)证明:
在
上单调递增;
(2)函数
,如果总存在
,对任意
,
都成立,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】将函数
的图象上所有点的纵坐标伸长到原来的
倍(横坐标不变),再向左平移
个单位长度,得到函数
的图象,设函数
.
(1)对函数
的解析式;
(2)若对任意
,不等式
恒成立,求
的最小值;
(3)若
在
内有两个不同的解
,
,求
的值(用含
的式子表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下命题,
①命题“若
,则
或
”为真命题;
②命题“若
,则
”的否命题为真命题;
③若平面
上不共线的三个点到平面
距离相等,则![]()
④若
,
是两个不重合的平面,直线
,命题
,命题
,则
是
的必要不充分条件;
⑤平面
过正方体
的三个顶点
,且
与底面
的交线为
,则
∥
;
其中,真命题的序号是______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的。在出租车几何学中,点还是形如
的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样,直角坐标系内任意两点
定义它们之间的一种“距离”:
,请解决以下问题:
(1)求线段
上一点
到点
的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点
的“距离”均为
的“圆”方程,并求该“圆”围成的图形的面积;
(3)若点
到点
的“距离”和点
到点
的“距离”相等,其中实数
满足
,求所有满足条件的点
的轨迹的长之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
(
,N(
为不同的两点,直线l:
,
=
,下列命题正确中正确命题的序号是_______
(1)若
,则直线l与线段MN相交;
(2)若
=-1,则直线l经过线段MN的中点;
(3)存在
,使点M在直线l上;
(4)存在
,使过M、N的直线与直线l重合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过
小时的
名大学生,将
人使用手机的时间分成
组:
,
,
,
,
分别加以统计,得到下表,根据数据完成下列问题:
使用时间/时 |
|
|
|
|
|
大学生/人 |
|
|
|
|
|
![]()
(1)完成频率分布直方图;
(2)根据频率分布直方图估计大学生使用手机的平均时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若
=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com