11£®Èçͼ£¬ÒÑÖªA£¨10£¬0£©£¬Ö±Ïßx=t£¨0£¼t£¼10£©Ó뺯Êýy=exµÄͼÏó½»ÓÚµãP£¬ÓëxÖá½»ÓÚµãH£¬¼Ç¡÷APHµÄÃæ»ýΪf£¨t£©£®
£¨1£©Çóº¯Êýf£¨t£©µÄ½âÎöʽ£»
£¨2£©Çóº¯Êýf£¨t£©µÄ×î´óÖµ£®
£¨3£©Èôg£¨t£©=$\left\{{\begin{array}{l}{f£¨t£©•{e^{-t}}+\frac{1}{6}{t^3}-4£¨{t£¾0}£©}\\{bt£¨{t¡Ü0}£©}\end{array}}$
̽¾¿£ºÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ·½³Ìg£¨t£©=mÓÐÇÒÖ»ÓÐÈý¸öʵÊý½â£¬Èô´æÔÚÇó³ömµÄȡֵ·¶Î§£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâÖªAH=10-t£¬PH=et£¬´Ó¶ø¿ÉµÃf£¨t£©=$\frac{1}{2}$£¨10-t£©et£¬0£¼t£¼10£»
£¨2£©Çóµ¼$f'£¨t£©=-\frac{1}{2}{e^t}+\frac{1}{2}¡Á£¨{10-t}£©{e^t}=\frac{1}{2}{e^t}£¨{9-t}£©$£»´Ó¶øÓɵ¼ÊýµÄÕý¸ºÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ¼°×îÖµ¼´¿É£»
£¨3£©»¯¼òg£¨t£©=$\left\{\begin{array}{l}{\frac{1}{2}£¨10-t£©+\frac{1}{6}{t}^{3}-4£¬t£¾0}\\{bt£¬t¡Ü0}\end{array}\right.$£»´Ó¶ø¿ÉµÃt£¾0ʱg¡ä£¨t£©=$\frac{1}{2}$t2-$\frac{1}{2}$=$\frac{1}{2}$£¨t-1£©£¨t+1£©£»´Ó¶øÅжϺ¯ÊýµÄµ¥µ÷ÐÔ¼°×îÖµ£¬ÔÙ½áºÏ·Ö¶Îº¯Êý£¬´Ó¶øÈ·¶¨Ê¹µÃ·½³Ìg£¨t£©=mÓÐÇÒÖ»ÓÐÈý¸öʵÊý½âʱmµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖª£¬AH=10-t£¬PH=et£¬
ËùÒÔf£¨t£©=$\frac{1}{2}$£¨10-t£©et£¬0£¼t£¼10£»
£¨2£©½â£º$f'£¨t£©=-\frac{1}{2}{e^t}+\frac{1}{2}¡Á£¨{10-t}£©{e^t}=\frac{1}{2}{e^t}£¨{9-t}£©$£»
Áîf¡ä£¨t£©=0µÃt=9£»
º¯Êýf£¨t£©Óëf¡ä£¨t£©ÔÚ¶¨ÒåÓòÉϵÄÇé¿öÏÂ±í£º

t£¨0£¬9£©9£¨9£¬10£©
f¡ä£¨t£©+0-
f£¨t£©¨J¼«´óÖµ¨K
ËùÒÔµ±t=9ʱ£¬º¯Êýf£¨t£©È¡µÃ×î´óÖµ$\frac{1}{2}{e^9}$£®
£¨3£©g£¨t£©=$\left\{\begin{array}{l}{\frac{1}{2}£¨10-t£©+\frac{1}{6}{t}^{3}-4£¬t£¾0}\\{bt£¬t¡Ü0}\end{array}\right.$£»
µ±t£¾0ʱ£¬g¡ä£¨t£©=$\frac{1}{2}$t2-$\frac{1}{2}$=$\frac{1}{2}$£¨t-1£©£¨t+1£©£»
Áîg¡ä£¨t£©=0µÃt=1£¬
¹Êt¡Ê£¨0£¬1£©£¬g¡ä£¨t£©£¼0£¬g£¨t£©Îª¼õº¯Êý£»
t¡Ê£¨1£¬+¡Þ£©£¬g¡ä£¨t£©£¾0£¬g£¨t£©ÎªÔöº¯Êý£»
¡à$g{£¨t£©_{min}}=g£¨1£©=\frac{2}{3}$£»
µ±t¡Ü0ʱ£¬g£¨t£©=bt£¬ÓÉÊýÐνáºÏÖª£»
b¡Ý0ʱ£¬²»´æÔÚm·ûºÏg£¨t£©=mÓÐÇÒÖ»ÓÐÈý¸öʵÊý½â£¬
b£¼0ʱ£¬´æÔÚm¡Ê£¨$\frac{2}{3}$£¬1£©£¬g£¨t£©=mÓÐÇÒÖ»ÓÐÈý¸öʵÊý½â£®
¹ÊmµÄȡֵ·¶Î§Îª£¨$\frac{2}{3}$£¬1£©£®

µãÆÀ ±¾Ì⿼²éÁ˵¼ÊýµÄ×ÛºÏÓ¦Óü°·Ö¶Îº¯ÊýµÄÓ¦Óã¬Í¬Ê±¿¼²éÁËÊýÐνáºÏµÄ˼ÏëÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚ×ø±êÆ½ÃæÄÚ£¬ÓëµãA£¨1£¬1£©¾àÀëΪ1£¬ÇÒÓëµãB£¨4£¬1£©¾àÀëΪ2µÄÖ±Ïß¹²ÓУ¨¡¡¡¡£©
A£®1ÌõB£®2ÌõC£®3ÌõD£®4Ìõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªiΪÐéÊýµ¥Î»£¬¸´Êýz1=a+2i£¬z2=2-i£¬ÇÒ|z1|=|z2|£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®-1C£®1»ò-1D£®¡À1»ò0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¡°x£¼2¡±ÊÇ¡°x£¨x-1£©£¼0¡±³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{3x+2£¨{x£¼1}£©}\\{{x^2}+ax£¨{x¡Ý1}£©}\end{array}}$£¬Èôf£¨f£¨0£©£©=a£¬ÔòʵÊýa=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô½Ç¦ÁµÄÖձ߾­¹ýµã£¨1£¬-2£©£¬Ôò$tan£¨{¦Á+\frac{¦Ð}{4}}£©$µÄֵΪ$-\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÓÃÈý¶ÎÂÛÍÆÀí£º¡°¶ÔÊýº¯Êýy=logax£¨a£¾0ÇÒa¡Ù1£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÒòΪy=log2xÊǶÔÊýº¯Êý£¬ËùÒÔy=log2xÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý¡±£¬ÄãÈÏΪÕâ¸öÍÆÀí£¨¡¡¡¡£©
A£®´óǰÌá´íÎóB£®Ð¡Ç°Ìá´íÎó
C£®ÍÆÀíÐÎʽ´íÎóD£®´óǰÌáºÍСǰÌá¶¼´íÎó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ä³ÖÐѧ¸ßÒ»¼¶´Ó¼×¡¢ÒÒÁ½¸ö°àÖи÷Ñ¡³ö7ÃûѧÉú²Î¼ÓÊýѧ¾ºÈü£¬ËûÃÇÈ¡µÃµÄ³É¼¨£¨Âú·Ö100·Ö£©µÄ¾¥Ò¶Í¼Èçͼ£¬ÆäÖмװàѧÉú³É¼¨µÄÖÚÊýÊÇ80£¬ÒÒ°àѧÉú³É¼¨µÄÖÐλÊýÊÇ89£¬Ôòx+yµÄֵΪ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¸´Æ½ÃæÉÏÓеãA£¬BÆä¶ÔÓ¦µÄ¸´Êý·Ö±ðΪ-3+iºÍ-1-3i£¬OΪԭµã£¬ÄÇô¡÷AOBÊÇ£¨¡¡¡¡£©
A£®Ö±½ÇÈý½ÇÐÎB£®µÈÑüÈý½ÇÐÎC£®µÈÑüÖ±½ÇÈý½ÇÐÎD£®ÕýÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸