精英家教网 > 高中数学 > 题目详情
定义在上的奇函数满足,且在区间上是增函数,则(  )
A.B.
C.D.
D

试题分析:由f(x)满足f(x-4)=-f(x)可变形为f(x-8)=f(x),得到函数是以8为周期的周期函数,则有f(-5)=f(3)=-f(-1)=f(1),再由f(x)在R上是奇函数,f(0)=0,再由f(x)在区间[0,2]上是增函数,以及奇函数的性质,推出函数在[-2,2]上的单调性,即可得到结论.解:∵f(x)满足f(x-4)=-f(x),∴f(x-8)=f(x),∴函数是以8为周期的周期函数,则f(-5)=f(3)=-f(-1)=f(1)又∵f(x)在R上是奇函数,f(0)=0,得f(0)=0,又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,∴f(x)在区间[-2,2]上是增函数,即,故选D
点评:本题考查函数的周期性,及函数的奇偶性与单调性,解题的关键是研究清楚函数的性质,利用函数的性质将三数的大小比较问题转化到区间[-2,2]上比较
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若函数,在上是减少的,则的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
运输工具
运输费单价:元/(吨•千米)
冷藏费单价:元/(吨•时)
固定费用:元/次
汽车
2
5
200
火车
1.6
5
2280
          
(1)汽车的速度为       千米/时,火车的速度为       千米/时:
(2)设每天用汽车和火车运输的总费用分别为(元)和(元),分别求的函数关系式(不必写出的取值范围),及为何值时(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数
(1)当a=1时,求的单调区间。
(2)若上的最大值为,求a的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售高订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是定义在上的奇函数,且当,设,给出三个条件:①,③.其中可以推出的条件共有          个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)(xR)为奇函数, f(2)="1," f(x+2)=f(x)+f(2),则f(3)等于(   )
A.B.1C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数上为增函数,则实数的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
 (Ⅰ) 试比较大小, 并写出完成总任务的时间的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?

查看答案和解析>>

同步练习册答案