精英家教网 > 高中数学 > 题目详情
已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为    .
-=1
椭圆+=1的焦点坐标为F1(-,0),F2(,0),离心率为e=.
由于双曲线-=1与椭圆+=1有相同的焦点,
因此a2+b2=7.
又双曲线的离心率e==,
所以=,
所以a=2,b2=c2-a2=3,
故双曲线的方程为-=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为2,则m的取值是 (  )
A.7B.5C.5或7D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.

(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:+=1(a>0,b>0)的右焦点为F(3,0),且点(-3,)在椭圆C上,则椭圆C的标准方程为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.
已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆+=1的长半轴长和短半轴长,若此椭圆的一焦点与抛物线y2=4x的焦点重合,则椭圆的方程为(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=   ,∠F1PF2的大小为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知点B是椭圆+=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,·=9,若点P的坐标为(0,t),则t的取值范围是(  )
A.0<t<3B.0<t≤3
C.0<t<D.0<t≤

查看答案和解析>>

同步练习册答案