精英家教网 > 高中数学 > 题目详情
10.已知圆:x2+y2+x-6y+c=0,直线l过(1,1)且斜率为$-\frac{1}{2}$.若圆与直线交于P,Q两点,且OP⊥OQ.求
(1)直线l方程;
(2)求c的值.

分析 (1)利用直线l过(1,1)且斜率为$-\frac{1}{2}$,可得直线的方程;
(20先将直线与圆的方程联立,得到5y2-20y+12+m=0,再由韦达定理分别求得y1•y2=$\frac{12+c}{5}$.因为OP⊥OQ,转化为x1•x2+y1•y2=0求解.

解答 解:(1)∵直线l过(1,1)且斜率为$-\frac{1}{2}$,
所以直线的方程为y-1=-$\frac{1}{2}$(x-1),即x+2y-3=0;
(2)设P、Q的坐标分别为(x1,y1)、(x2,y2),
由OP⊥OQ可得:$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,
所以x1•x2+y1•y2=0.
由x+2y-3=0得x=3-2y代入x2+y2+x-6y+c=0
化简得:5y2-20y+12+c=0,
所以y1+y2=4,y1•y2=$\frac{12+c}{5}$.
所以x1•x2+y1•y2=(3-2y1)•(3-2y2)+y1•y2=9-6(y1+y2)+5y1•y2
=9-6×4+5×$\frac{12+c}{5}$=c-3=0
解得:c=3.

点评 本题主要考查直线与圆的位置关系其其方程的应用,应用了韦达定理,体现了数形结合的思想,是常考题型,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数y=3tan($\frac{1}{2}$x-$\frac{π}{4}$)的定义域是{x|x≠2kπ+$\frac{3π}{2}$,k∈Z},值域是(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2).
(1)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标;
(2)若$\overrightarrow{b}$=(2,2),且m$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$垂直,求实数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$∥$\overrightarrow{b}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=3$\sqrt{5}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.4$\sqrt{5}$D.2$\sqrt{5}$,或4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=cosx•ln(x2+1)的部分图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,x∈[$\root{3}{e}$,e3],函数g(x)=[f(x)]2-2a•f(x)+3的最小值为h(a).
(1)求h(a)的解析式;
(2)是否存在实数m,n,同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)=2x+a,g(x)=log${\;}_{\frac{1}{2}}$x,且?x∈[1,2],都有f(x)<g(x),则实数a的取值范围是a<-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=mx2-x-1在(0,1)内恰有一个零点,则实数m的取值范围是(  )
A.(2,+∞)B.{0}∪(2,+∞)C.{0}D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在正方体ABCD-A1B1C1D1中,AB=2,点A,B,C,D在球O上,球O与BA1的另一个交点为E,且AE⊥BA1,则球O的表面积为 (  )
A.B.C.12πD.16π

查看答案和解析>>

同步练习册答案