精英家教网 > 高中数学 > 题目详情
20.在正方体ABCD-A1B1C1D1中,AB=2,点A,B,C,D在球O上,球O与BA1的另一个交点为E,且AE⊥BA1,则球O的表面积为 (  )
A.B.C.12πD.16π

分析 设与CD1的另一个交点为F,连结EF,DF,得BCEF是矩形,则三棱柱ABE-DCF是球O的内接直三棱柱,求出球O的半径,即可求出球O表面积.

解答 解:设与CD1的另一个交点为F,连结EF,DF,得BCEF是矩形,
则三棱柱ABE-DCF是球O的内接直三棱柱,
∵正方体ABCD-A1B1C1D1中,AB=2,AE⊥BA1
∴AE=BE=$\sqrt{2}$,
∴球O的半径R=$\sqrt{2}$,
∴球O表面积为:4πR2=4π•($\sqrt{2}$)2=8π.
故选:B.

点评 本题主要考查球的表面积公式,以及球内接三棱柱的关系,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知圆:x2+y2+x-6y+c=0,直线l过(1,1)且斜率为$-\frac{1}{2}$.若圆与直线交于P,Q两点,且OP⊥OQ.求
(1)直线l方程;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x-3)=loga$\frac{x}{6-x}$(a>0)
(1)判断f(x)的奇偶性,并说明理由.
(2)当0<a<1时,求函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和为Sn,若a1008=$\frac{1}{2}$,则S2015的值是(  )
A.$\frac{2015}{2}$B.$\frac{2017}{2}$C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设p:A={x|-1<x<1},q:B={x|b-a<x<b+a}
(1)当a=2时,若p是q的充分不必要条件,求实数b的范围;
(2)若a=1是A∩B=∅的充分条件,求实数b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={(x,y)|y=$\frac{{x}^{2}-4}{x+2}$},B={(x,y)|y=x-2},则集合A、B的关系是(  )
A.B⊆AB.A?BC.A=BD.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列函数的奇偶性
①f(x)=xlg(x+$\sqrt{{x}^{2}+1}$);
②f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$;
③f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+1(x>0)}\\{{x}^{2}+2x-1(x<0)}\end{array}\right.$;
④f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在区间(-1,4)中任取一个数x使得2x>1的概率为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案