精英家教网 > 高中数学 > 题目详情
3.设正项等差数列{an}的前n项和为Sn,若S2017=4034,则$\frac{1}{a_9}+\frac{9}{{{a_{2009}}}}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.2D.4

分析 由差数列的前n项和公式,求出a1+a2017=4.由等差数列的性质得a9+a2009=4,由此利用基本不等式能求出$\frac{1}{a_2}+\frac{1}{{{a_{2008}}}}$的最小值.

解答 解:由差数列的前n项和公式,得${S_{2017}}=\frac{{2017({a_1}+{a_{2017}})}}{2}=4034$,
则a1+a2017=4.
由等差数列的性质得a9+a2009=4,
∴$\frac{1}{a_9}+\frac{9}{{{a_{2009}}}}=\frac{1}{4}({a_9}+{a_{2009}})(\frac{1}{a_9}+\frac{9}{{{a_{2009}}}})=\frac{1}{4}(10+\frac{{{a_{2009}}}}{a_9}+\frac{{9{a_9}}}{{{a_{2009}}}})≥\frac{1}{4}(10+2\sqrt{\frac{{{a_{2009}}}}{a_9}×\frac{{9{a_9}}}{{{a_{2009}}}}})=\frac{1}{4}(10+6)=4$.
故选:D.

点评 本题考查数列两项倒数和的最小值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=log2(x2-ax+3a),对于任意x≥2,当△x>0时,恒有f(x+△x)>f(x),则实数a的取值范围是(  )
A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某中学高一(8)班共有学生56人,编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,20,48号的同学已在样本中,那么还有一个同学的编号是34.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足(1-i)z=i,则复数$\overline{z}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数$z=\frac{5}{2i-1}$(i为虚数单位),则z的共轭复数对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在如图所示的多面体中,DE⊥平面ABCD,AF∥DE,AD∥BC,AB=CD,∠ABC=60°,BC=2AD=4DE=4.
(1)在AC上求作点P,使PE∥平面ABF,请写出作法并说明理由;
(2)求三棱锥A-CDE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于数列A:a1,a2,…,an,若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0-1数列”.若存在一个正整数k(2≤k≤n-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列A:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列A:1,1,0,1,0,1,0,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若项数为m的数列A一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(III)假设数列A不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线两个焦点坐标分别是F1(-5,0),F2(5,0),双曲线上一点到的距离之差的绝对值等于6,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“α=$\frac{π}{6}$”是$tan({π-a})=-\frac{{\sqrt{3}}}{3}$的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案