精英家教网 > 高中数学 > 题目详情
17.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上是单调函数,求实数a的取值范围.

分析 (1)根据二次函数f(x)的最小值为1,且f(0)=f(2)可得对称轴为x=1,可设f(x)=a(x-1)2+1,由f(0)=3,求出a的值即可;
(2)根据 f(x)在区间[2a,a+1]上是单调函数则对称轴应该在区间的左侧或在区间的右侧,从而可求出a的取值范围.

解答 解:(1)由已知,设f(x)=a(x-1)2+1,由f(0)=3,得a=2,
故f(x)=2x2-4x+3;
(2)二次函数的对称轴为x=1,
当对称轴在区间的左侧时,
函数f(x)在区间[2a,a+1]上单调递增,即2a≥1解得a≥$\frac{1}{2}$;
当对称轴在区间的右侧时,
函数f(x)在区间[2a,a+1]上单调递减,即a+1≤1解得a≤0,
综上,实数a的取值范围为(-∞,0]∪[$\frac{1}{2}$,+∞).

点评 本题主要考查了二次函数的性质,以及二次函数在闭区间上的单调性,同时考查了分类讨论的数学思想,属于中档题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图所示,程序框图输出的结果为(  )
A.15B.16C.136D.153

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两条渐进线的斜率之积为-3,左右两支上分别由动点A和B.
(1)设直线AB的斜率为1,经过点D(0,5a),且$\overrightarrow{AD}=λ\overrightarrow{DB}$,求实数λ的值.
(2)设点A关于x轴的对称点为M.若直线AB,MB分别与x轴相交于点P,Q,O为坐标原点,证明|OP|•|OQ|=a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.接下列不等式
(Ⅰ)-3x2-5x+2<0
(Ⅱ)x2+(1-a)x-a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某投资人打算投资甲、乙两个项目,根据预测:甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别是30%和10%,投资人计划投资额不超过10万,要求确保可能的资金亏损不超过1.8万元.若要使可能的盈利最大,则投资人对甲、乙两个项目应各自投资4、6万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}的前n项和为Sn,且a2=18-a7,S8=(  )
A.18B.36C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义域为R的连续函数f(x)对任意x都有f(x)=f(4-x),且当x≠2时,其导函数满足(x-2)•f′(x)>0,则有(  )
A.f(sinx)<f(1+sinx)<f(52+sinxB.f(52+sinx)<f(sinx)<f(1+sinx)
C.f(1+sinx)<f(sinx)≤f(52+sinxD.f(1+sinx)<f(52+sinx)≤f(sinx)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$,过点G(1,0)的直线l与椭圆C相交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{4\sqrt{2}}{5}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是(  )
A.3个都是正品B.至少有一个是次品
C.3个都是次品D.至少有一个是正品

查看答案和解析>>

同步练习册答案