【题目】已知数列
的前
项和为
,且2,
,
成等差数列.
(1)求数列
的通项公式;
(2)若
,求数列
的前
项和
;
(3)对于(2)中的
,设
,求数列
中的最大项.
科目:高中数学 来源: 题型:
【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别 | 候车时间 | 人数 |
一 |
| 2 |
二 |
| 6 |
三 |
| 4 |
四 |
| 2 |
五 |
| 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
在如图所示的多面体中,四边形
和
都为矩形。
![]()
(Ⅰ)若
,证明:直线
平面
;
(Ⅱ)设
,
分别是线段
,
的中点,在线段
上是否存在一点
,使直线
平面
?请证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加环保知识竞赛的1200名学生中,随机抽取60名,将其成绩(均为整数)分成六段
,
,…,
后画出如图的频率分布直方图.
![]()
(1)估计这次竞赛成绩的众数与中位数(结果保留小数点后一位);
(2)若这次竞赛成绩不低于80分的同学都可以获得一份礼物,试估计该校参加竞赛的1200名学生中可以获得礼物的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
到其焦点的距离为
.
(1)求
与
的值;
(2)若斜率为
的直线
与抛物线
交于
、
两点,点
为抛物线
上一点,其横坐标为1,记直线
的斜率为
,直线
的斜率为
,试问:
是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
设
是函数
的图象上任意两点,且
,已知点
的横坐标为
.
(1)求证:
点的纵坐标为定值;
(2)若
求
;
(3)已知
=
,其中
,
为数列
的前
项和,若
对一切
都成立,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
.
(1)求f(2)+f(
),f(3)+f(
)的值;
(2)求证:f(x)+f(
)是定值;
(3)求f(2)+f(
)+f(3)+f(
)+…+f(2012)+f(
)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com