精英家教网 > 高中数学 > 题目详情

【题目】已知点A(2,8)在抛物线,直线l和抛物线交于B,C两点,焦点F是三角形ABC的重心,MBC的中点(不在x轴上)

(1)求M点的坐标;

(2)求直线l的方程.

【答案】(1)(11,-4)(2)

【解析】

1)由点A(2,8)在抛物线上,有求出p=16,得到

抛物线方程为,焦点F(8,0)是ABC的重心,设点M的坐标为,则由

即可求出M点的坐标;

(2)设BC所在直线的方程为:

x所以,由(2)的结论得,解得,即可求出直线l的方程.

解(1)由点A(2,8)在抛物线上,有

解得p=16. 所以抛物线方程为,焦点F的坐标为(8,0).

F(8,0)是ABC的重心,MBC的中点,设点M的坐标为,则

所以点M的坐标为(11,-4).

(2)由于线段BC的中点M不在x轴上,所以BC所在

的直线不垂直于x.BC所在直线的方程为:

x

所以,由(2)的结论得,解得

因此BC所在直线的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)(x∈R),对函数yg(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数yh(x)(x∈R),yh(x)满足:对任意的x∈R,两个点(xh(x)),(xg(x))关于点(xf(x))对称.若h(x)是g(x)=关于f(x)=3xb的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶元,售价每瓶元,未售出的酸奶降价处理,以每瓶元的价格当天全部处理完。据往年销售经验,每天需求量与当天最高气温(单位:)有关,如果最高气温不低于,需求量为瓶;如果最高气温位于区间,需求量为瓶;如果最高气温低于,需求量为瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

天数

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

(1)求六月份这种酸奶一天的需求量不超过瓶的概率;

(2)设六月份一天销售这种酸奶的利润为(单位:),若该超市在六月份每天的进货量均为瓶,写出的所有可能值,并估计大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(12分)fx=2x3+ax2+bx+1的导数为f′x),若函数y=f′x)的图象关于直线x=﹣对称,且f′1=0

)求实数ab的值

)求函数fx)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若命题p:函数y=x2﹣2x的单调递增区间是[1,+∞),命题q:函数y=x﹣ 的单调递增区间是[1,+∞),则(
A.p∧q是真命题
B.p∨q是假命题
C.非p是真命题
D.非q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2x+ ,若x1∈(1,2),x2∈(2,+∞),则(
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)=
(1)求f(x)的最小正周期;
(2)求f(x)在[ ]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx+2 cos2x﹣
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

同步练习册答案