精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
1+|x|
 (x∈R)),给出下列命题:
(1)对?∈R,等式f(-x)+f(x)=0恒成立;
(2)函数f(x)的值域为(-1,1);
(3)若x1≠x2,则一定有f(x1)≠f(x2);
(4)函数g(x)=f(x)-x在R上有三个零点.
其中正确命题的序号为______(把所有正确命题的序号都填上).
(1)f(-x)=
-x
1+|-x|
=-
x
1+|x|
=-f(x)
,所以(1)成立;
(2)当x=0时f(x)=0,因函数为奇函数,当x>0时,f(x)=
x
1+x
=
1
1+
1
x
,∵
1
x
>0
,∴1+
1
x
>1

0<
1
1+
1
x
<1
,即0<f(x)<1;由对称性知当x<0时,-1<f(x)<0,又f(0)=0,∴函数f(x)的值域为(-1,1);
(3)设x1<x2<0,则f(x1)-f(x2)=
x1
1+|x1|
-
x2
1+|x2|
=
x1+x1|x2|-x2-x2|x1|
(1+|x1|)(1+|x2|)
=
x1-x2
(1+|x1|)(1+|x2|)

∵x1<x2<0,∴
x1-x2
(1+|x1|)(1+|x2|)
<0
,即f(x1)<f(x2),所以函数f(x)在(-∞,0)为单调函数,所以函数在定义域上为单调函数,若x1≠x2,则一定有f(x1)≠f(x2);
(4)当x>0时,由f(x)-x=0得,
x
1+x
-x=0
,此时方程无解,由对称性知,当x<0时,方程也无解,又f(0)=0,∴函数g(x)=f(x)-x在R上有一个零点0,所以④不正确.
故答案为①②③.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案