精英家教网 > 高中数学 > 题目详情
11.如图,在直三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=a,AC=2,AA1=1,点D在棱B1C1上,且B1D:DC1=1:3.过点D作DE∥A1B1交A1C1于点E.
(1)求证:A1C⊥平面BDE;
(2)当点B1到平面A1BD的距离为$\frac{1}{2}$时,求直线B1D与平面A1BD所成的角.

分析 (1)由题意建立如图示的空间直角坐标系,血出各个点的坐标,进利用向量的垂直证明了线线的垂直,即可证明A1C⊥平面BDE;
(2)求出平面A1BD的法向量,利用向量的夹角公式,点B1到平面A1BD的距离为$\frac{1}{2}$,求出a,即可求直线B1D与平面A1BD所成的角.

解答 解:(1)证明:以A为坐标原点,建立空间直角坐标系A-xyz,D($\frac{3}{4}$a,$\frac{1}{2}$,1),A1(0,0,1),B(a,0,0),C(0,2,0),
∴$\overrightarrow{BD}$=(-$\frac{a}{4}$,$\frac{1}{2}$,1),$\overrightarrow{{A}_{1}C}$=(0,2,-1),
∵$\overrightarrow{BD}$$•\overrightarrow{{A}_{1}C}$=(-$\frac{a}{4}$,$\frac{1}{2}$,1)•(0,2,-1)=0,
∴$\overrightarrow{BD}⊥\overrightarrow{{A}_{1}C}$,即BD⊥A1C.
∵A1C⊥A1B1,DE∥A1B1
∴A1C⊥DE,
∵BD∩DE=D,
∴A1C⊥平面BDE;
(2)设平面A1BD的法向量为$\overrightarrow{n}$=(x,y,z),则
∵$\overrightarrow{{A}_{1}B}$=(a,0,-1),$\overrightarrow{{A}_{1}D}$=($\frac{3}{4}$a,$\frac{1}{2}$,0),
∴$\left\{\begin{array}{l}{ax-z=0}\\{\frac{3}{4}ax+\frac{1}{2}y=0}\end{array}\right.$,取x=1,可得$\overrightarrow{n}$=(2,-3a,2a),
∵$\overrightarrow{D{B}_{1}}$=($\frac{1}{4}$a,-$\frac{1}{2}$,0),点B1到平面A1BD的距离为$\frac{1}{2}$
∴$\frac{1}{2}$a+$\frac{3}{2}$a=$\sqrt{4+9{a}^{2}+4{a}^{2}}$•$\frac{1}{2}$,
∴a=$\frac{2}{\sqrt{3}}$,
∴$\overrightarrow{D{B}_{1}}$=($\frac{1}{2\sqrt{3}}$,-$\frac{1}{2}$,1),
∴|$\overrightarrow{D{B}_{1}}$|=$\sqrt{\frac{1}{12}+\frac{1}{4}+1}$=$\frac{2\sqrt{3}}{3}$,
∴直线B1D与平面A1BD所成的角的正弦值为$\frac{\frac{1}{2}}{\frac{2\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{4}$,
∴直线B1D与平面A1BD所成的角为arcsin$\frac{\sqrt{3}}{4}$.

点评 本题考查线面垂直,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图(其中[x]表示不超过实数x的最大整数),则运行后输出的结果是(  )
A.31B.32C.35D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=4x2-kx-8在[5,8]上不是单调函数,则k的取值范围是(  )
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(a,2c-b)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角A的大小;
(Ⅱ)求sinB+sinC的最大值并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有1700辆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆心为C的圆(x-1)2+y2=6内有点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当弦AB被点P平分时,求直线l的方程.
(2)当AB长为2$\sqrt{5}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在平面直角坐标系xoy中,O为坐标原点,曲线$C:\left\{\begin{array}{l}x=\sqrt{3}cosα+sinα\\ y=\sqrt{3}sinα-cosα\end{array}\right.$(α为参数),在以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系,直线$l:ρsin({θ+\frac{π}{6}})=1$.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)曲线C上恰好存在三个不同的点到直线l的距离相等,分别求出这三个点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数组:$({\frac{1}{1}}),({\frac{1}{2},\frac{2}{1}}),({\frac{1}{3},\frac{2}{2},\frac{3}{1}}),({\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1}}),…,({\frac{1}{n},\frac{2}{n-1},\frac{3}{n-2},…\frac{n-1}{2},\frac{n}{1}})$,记该数组为:(a1),(a2,a3),(a3,a4,a5),…则a2009=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+aln(x+1)在(-1,+∞)上是增函数,则a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案