3£®ÒÑÖªÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬OÎª×ø±êÔ­µã£¬ÇúÏß$C£º\left\{\begin{array}{l}x=\sqrt{3}cos¦Á+sin¦Á\\ y=\sqrt{3}sin¦Á-cos¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµ¥Î»³¤¶ÈµÄ¼«×ø±êϵ£¬Ö±Ïß$l£º¦Ñsin£¨{¦È+\frac{¦Ð}{6}}£©=1$£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇúÏßCÉÏÇ¡ºÃ´æÔÚÈý¸ö²»Í¬µÄµãµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬·Ö±ðÇó³öÕâÈý¸öµãµÄ¼«×ø±ê£®

·ÖÎö £¨1£©ÏûÈ¥²ÎÊý¦Á£¬¼´¿ÉµÃµ½ÇúÏßCµÄÆÕͨ·½³Ì£¬ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯Çó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³öÔ²µÄÔ²ÐÄÓë°ë¾¶£¬Çó³öÈý¸öµãµÄ×ø±ê£¬È»ºóÇó½â¼«×ø±ê£®

½â´ð ½â£º£¨1£©ÇúÏß$C£º\left\{\begin{array}{l}x=\sqrt{3}cos¦Á+sin¦Á\\ y=\sqrt{3}sin¦Á-cos¦Á\end{array}\right.$£¬
¿ÉµÃ£º$\left\{\begin{array}{l}{{x}^{2}=3co{s}^{2}¦Á+2\sqrt{3}sin¦Ácos¦Á+si{n}^{2}¦Á}\\{{y}^{2}=3si{n}^{2}¦Á-2\sqrt{3}sin¦Ácos¦Á+co{s}^{2}¦Á}\end{array}\right.$£¬
ÇúÏßCµÄÆÕͨ·½³Ì£ºx2+y2=4£®
Ö±Ïß$l£º¦Ñsin£¨{¦È+\frac{¦Ð}{6}}£©=1$=$\frac{\sqrt{3}}{2}¦Ñsin¦È+\frac{1}{2}¦Ñcos¦È$£¬
Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£ºx+$\sqrt{3}$y-2=0£®
£¨2£©¡ßÔ²CµÄÔ²ÐÄ£¨0£¬0£©°ë¾¶Îª£º2£¬
£¬Ô²ÐÄCµ½Ö±ÏߵľàÀëΪ1£¬
¡àÕâÈý¸öµãÔÚÆ½ÐÐÖ±Ïßl1Óë l2ÉÏ£¬Èçͼ£º
Ö±Ïßl1Óë l2ÓëlµÄ¾àÀëΪ1£®
l1£ºx+$\sqrt{3}y$=0£¬l2£ºx+$\sqrt{3}y$-4=0£®
$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{x+\sqrt{3}y=0}\end{array}\right.$£¬¿ÉµÃ$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=1}\end{array}\right.$£¬
Á½¸ö½»µã£¨-$\sqrt{3}$£¬1£©£¬£¨$\sqrt{3}$£¬-1£©£»
$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{x+\sqrt{3}y-4=0}\end{array}\right.$£¬½âµÃ£¨1£¬$\sqrt{3}$£©£¬
ÕâÈý¸öµãµÄ¼«×ø±ê·Ö±ðΪ£º£¨2£¬$\frac{11¦Ð}{6}$£©£¬£¨2£¬$\frac{5¦Ð}{6}$£©£¬£¨2£¬$\frac{¦Ð}{3}$£©

µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³Ì£¬Ô²µÄ²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏòÁ¿$\overrightarrow a=£¨{5£¬-3}£©£¬\overrightarrow b=£¨{9£¬-6-cos¦Á}£©£¬¦Á$ÊǵڶþÏóÏ޽ǣ¬Èô£¨2$\overrightarrow{a}$-$\overrightarrow{b}$£©¡Î$\overrightarrow{a}$£¬Ôòtan¦Á=£¨¡¡¡¡£©
A£®-$\frac{4}{3}$B£®-$\frac{3}{4}$C£®-$\frac{4}{5}$D£®¡À$\frac{4}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼһ£¬¾ØÐÎABCDÓëADEFËùÔÚÆ½Ãæ´¹Ö±£¬½«Èý½ÇÐÎDEFÑØFD·­ÕÛ£¬Ê¹·­ÕÛºóµãEÂäÔÚBCÉÏ£¨Èçͼ¶þ£©£¬ÉèAB=1£¬FA=x£¬AD=y£®
£¨¢ñ£©ÊÔÇóy¹ØÓÚxµÄº¯Êý½âÎöʽ£»

£¨¢ò£©Í¼¶þÖе±EΪBCÖеãʱÇóÖ±ÏßADÓëÆ½ÃæFDEËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬ÒÑÖª¡ÏBAC=90¡ã£¬AB=a£¬AC=2£¬AA1=1£¬µãDÔÚÀâB1C1ÉÏ£¬ÇÒB1D£ºDC1=1£º3£®¹ýµãD×÷DE¡ÎA1B1½»A1C1ÓÚµãE£®
£¨1£©ÇóÖ¤£ºA1C¡ÍÆ½ÃæBDE£»
£¨2£©µ±µãB1µ½Æ½ÃæA1BDµÄ¾àÀëΪ$\frac{1}{2}$ʱ£¬ÇóÖ±ÏßB1DÓëÆ½ÃæA1BDËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªy=asinx+bcosx+cµÄͼÏóÓÐÒ»¸ö×îµÍµã£¨$\frac{11¦Ð}{6}$£¬1£©£¬Èç¹ûͼÏó¸÷µã×Ý×ø±ê²»±ä£¬ºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{3}{¦Ð}$±¶£¬ÔÙÏò×óÆ½ÒÆ1¸öµ¥Î»£¬¿ÉµÃµ½y=f£¨x£©µÄͼÏó£®ÓÖÖ±Ïßy=3Óëy=f£¨x£©Ã¿ÏàÁÚÁ½¸ö½»µãµÄ¾àÀë¾ùΪ3£®
£¨1£©Çóy=f£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôy=f£¨x£©ÔÚ[$\frac{¦Ð}{6}$£¬l]Éϵ¥µ÷£¬ÇólµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¡°3£¼a£¼5¡±ÊÇ¡°·½³Ì$\frac{x^2}{a-3}+\frac{y^2}{5-a}=1$±íʾÍÖÔ²¡±µÄ£¨¡¡¡¡£©Ìõ¼þ£®
A£®³ä·Ö²»±ØÒªB£®±ØÒª²»³ä·Ö
C£®³äÒªD£®¼È²»³ä·ÖÒ²²»±ØÒª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬¡ÏACB=90¡ã£¬E£¬F£¬G·Ö±ðÊÇAA1£¬AC£¬BB1µÄÖе㣬ÇÒCG¡ÍC1G£®
£¨¢ñ£©ÈôDΪBEµÄÖе㣬ÇóÖ¤£ºDF¡ÍÆ½ÃæA1C1G£»
£¨¢ò£©ÈôAC=4£¬BC=2£¬ÇóÆ½ÃæBEFÓëÆ½ÃæB1C1CBËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=kx3-3£¨k+1£©x2-k2+1£¨k£¾0£©£¬Èôf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨0£¬4£©£®
£¨1£©ÇókµÄÖµ£»
£¨2£©µ±x£¾kʱ£¬ÇóÖ¤£º2$\sqrt{x}$£¾3-$\frac{1}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈçͼABÊǰëÔ²OµÄÖ±¾¶£¬C£¬DÊÇ»¡ABµÄÈýµÈ·Öµã£¬M£¬NÊÇÏß¶ÎABµÄÈýµÈ·Öµã£¬ÈôOA=6£¬Ôò$\overrightarrow{MC}•\overrightarrow{ND}$=26

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸