精英家教网 > 高中数学 > 题目详情
14.如图一,矩形ABCD与ADEF所在平面垂直,将三角形DEF沿FD翻折,使翻折后点E落在BC上(如图二),设AB=1,FA=x,AD=y.
(Ⅰ)试求y关于x的函数解析式;

(Ⅱ)图二中当E为BC中点时求直线AD与平面FDE所成角的正弦值.

分析 (Ⅰ)由已知中矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E恰与BC上的点P重合.设AB=1,FA=x(x>1),AD=y,我们利用勾股定理分别求出BP,PC,根据BC=BP+PC,可以得到 x,y的关系式;
(Ⅱ)求出A到平面FDE的距离,利用正弦函数,即可求直线AD与平面FDE所成角的正弦值.

解答 解:(Ⅰ)∵矩形ABCD与矩形ADEF所在的平面互相垂直,
AB=1,FA=x(x>1),AD=y,
∴FE=FP=AD=BC=y,AB=DC=1,FA=DE=DP=x
在Rt△DCP中,PC=$\sqrt{{x}^{2}-1}$
在Rt△FAP中,AP=$\sqrt{{y}^{2}-{x}^{2}}$
在Rt△ABP中,BP=$\sqrt{{y}^{2}-{x}^{2}-1}$
∵BC=BP+PC=$\sqrt{{y}^{2}-{x}^{2}-1}$+$\sqrt{{x}^{2}-1}$=y
即y=$\frac{{x}^{2}}{\sqrt{{x}^{2}-1}}$;
(Ⅱ)图二中当E为BC中点时,AD=2,AF=$\sqrt{2}$,EF=$\sqrt{6}$
设A到平面FDE的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{6}h=\frac{1}{3}×\frac{1}{2}×2×1×\sqrt{2}$,
∴h=$\frac{\sqrt{6}}{3}$
∴直线AD与平面FDE所成角的正弦值=$\frac{h}{AD}$=$\frac{\sqrt{6}}{6}$.

点评 本题考查的知识点是空间两点之间的距离计算,考查直线与平面所成角的正弦值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lgx的定义域为集合A,函数$g(x)=\sqrt{4-x}$的定义域为集合B,集合C=(-∞,a].
(Ⅰ)求A∩B;
(Ⅱ)若A∩C=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线x=2与双曲线C:$\frac{{x}^{2}}{4}$-y2=1的渐近线交于E1、E2两点,记$\overrightarrow{O{E}_{1}}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{O{E}_{2}}$=$\overrightarrow{{e}_{2}}$,任取双曲线C上的点P,若$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$(a,b∈R),则(  )
A.0<a2+b2<1B.0<a2+b2<$\frac{1}{2}$C.a2+b2≥1D.a2+b2≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=4x2-kx-8在[5,8]上不是单调函数,则k的取值范围是(  )
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=\frac{1}{x}ln(-{x^2}-3x+4)$的定义域是(  )
A.(-∞,-4]∪[1,+∞)B.(-4,0)∪(0,1)C.(-4,1)D.(-∞,-4)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(a,2c-b)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角A的大小;
(Ⅱ)求sinB+sinC的最大值并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有1700辆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在平面直角坐标系xoy中,O为坐标原点,曲线$C:\left\{\begin{array}{l}x=\sqrt{3}cosα+sinα\\ y=\sqrt{3}sinα-cosα\end{array}\right.$(α为参数),在以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系,直线$l:ρsin({θ+\frac{π}{6}})=1$.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)曲线C上恰好存在三个不同的点到直线l的距离相等,分别求出这三个点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定义在R上的奇函数f(x)满足f(4-x)=f(x),f(-1)=6,数列{an}的前n项和为Sn,且a1=-1,Sn=2an+n (n∈N),则f(a5)+f(a6)=-12.

查看答案和解析>>

同步练习册答案