精英家教网 > 高中数学 > 题目详情
5.已知直线x=2与双曲线C:$\frac{{x}^{2}}{4}$-y2=1的渐近线交于E1、E2两点,记$\overrightarrow{O{E}_{1}}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{O{E}_{2}}$=$\overrightarrow{{e}_{2}}$,任取双曲线C上的点P,若$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$(a,b∈R),则(  )
A.0<a2+b2<1B.0<a2+b2<$\frac{1}{2}$C.a2+b2≥1D.a2+b2≥$\frac{1}{2}$

分析 求出$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的坐标,得出P点坐标,代入双曲线方程得出ab=$\frac{1}{4}$,根据基本不等式得出a2+b2的范围.

解答 解:双曲线的渐近线方程为y=±$\frac{1}{2}$x,∴E1(2,1),E2(2,-1).
∵$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$=(2a+2b,a-b),
∴P(2a+2b,a-b),
∴(a+b)2-(a-b)2=1,∴4ab=1,即ab=$\frac{1}{4}$.
∴a2+b2≥2ab=$\frac{1}{2}$.
故选:D.

点评 本题考查了平面向量的数量积运算,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)={x^m}-\frac{2}{x},且\;f(4)=\frac{7}{2}$.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)写出不等式f(x)>1的解集(不要求写出解题过程).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲不能安排在5月1日、乙不能安排在5月7日,不同的安排方法共有3720种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow a=({5,-3}),\overrightarrow b=({9,-6-cosα}),α$是第二象限角,若(2$\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{a}$,则tanα=(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.-$\frac{4}{5}$D.±$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=sin2x-($\frac{2}{3}$)${\;}^{\sqrt{|x|}}$+$\frac{1}{2}$,有下列四个结论,其中正确结论的个数为(  )
A.f(x)是奇函数B.f(x)的最小值是$-\frac{1}{2}$
C.f(x)的最大值是$\frac{5}{6}$D.当x>2003时,$f(x)>\frac{1}{2}$恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,则a=$2或\frac{127}{128}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)设0<x<$\frac{3}{2}$,求函数y=x(2-x)的最大值
(2)已知x>3,求y=x+$\frac{4}{x-3}$的最小值
(3)已知x>0,y>0,$\frac{x}{2}$+$\frac{y}{3}$=2,求xy的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图一,矩形ABCD与ADEF所在平面垂直,将三角形DEF沿FD翻折,使翻折后点E落在BC上(如图二),设AB=1,FA=x,AD=y.
(Ⅰ)试求y关于x的函数解析式;

(Ⅱ)图二中当E为BC中点时求直线AD与平面FDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E,F,G分别是AA1,AC,BB1的中点,且CG⊥C1G.
(Ⅰ)若D为BE的中点,求证:DF⊥平面A1C1G;
(Ⅱ)若AC=4,BC=2,求平面BEF与平面B1C1CB所成角的正弦值.

查看答案和解析>>

同步练习册答案