分析 根据基本不等式的即可求出,注意等号成立的条件.
解答 解:$\begin{array}{l}(1)∵0<x<\frac{3}{2}$,
∴2-x>0,
∴$y=x(2-x)≤{[{\frac{x+(2-x)}{2}}]^2}=1\end{array}$,当且仅当x=2-x时取等号,既x=1时,y的最大值为1,
$\begin{array}{l}(2)∵x>3$,∴$x-3>0\\∴y=x+\frac{4}{x-3}=(x-3)+\frac{4}{x-3}+3≥2\sqrt{4}+3=7\end{array}$,$当且仅当x-3=\frac{4}{x-3}时取等号,即x=5时,y的最小值为7$,
(3)∵x>0,y>0,
∴$\frac{x}{2}+\frac{y}{3}≥2\sqrt{\frac{x}{2}•\frac{y}{3}}∴2≥2\sqrt{\frac{xy}{6}}∴xy≤6$,
$当且仅当\frac{x}{2}=\frac{y}{3}=1时取等号,即x=2,y=3时,xy的最大值为6$.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x0<a | B. | x0>b | C. | x0<c | D. | x0>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a2+b2<1 | B. | 0<a2+b2<$\frac{1}{2}$ | C. | a2+b2≥1 | D. | a2+b2≥$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (40,64) | B. | [40,64] | C. | (-∞,40)∪(64,+∞) | D. | (-∞,40]∪[64,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4]∪[1,+∞) | B. | (-4,0)∪(0,1) | C. | (-4,1) | D. | (-∞,-4)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com