精英家教网 > 高中数学 > 题目详情
17.(1)设0<x<$\frac{3}{2}$,求函数y=x(2-x)的最大值
(2)已知x>3,求y=x+$\frac{4}{x-3}$的最小值
(3)已知x>0,y>0,$\frac{x}{2}$+$\frac{y}{3}$=2,求xy的最大值.

分析 根据基本不等式的即可求出,注意等号成立的条件.

解答 解:$\begin{array}{l}(1)∵0<x<\frac{3}{2}$,
∴2-x>0,
∴$y=x(2-x)≤{[{\frac{x+(2-x)}{2}}]^2}=1\end{array}$,当且仅当x=2-x时取等号,既x=1时,y的最大值为1,
$\begin{array}{l}(2)∵x>3$,∴$x-3>0\\∴y=x+\frac{4}{x-3}=(x-3)+\frac{4}{x-3}+3≥2\sqrt{4}+3=7\end{array}$,$当且仅当x-3=\frac{4}{x-3}时取等号,即x=5时,y的最小值为7$,
(3)∵x>0,y>0,
∴$\frac{x}{2}+\frac{y}{3}≥2\sqrt{\frac{x}{2}•\frac{y}{3}}∴2≥2\sqrt{\frac{xy}{6}}∴xy≤6$,
$当且仅当\frac{x}{2}=\frac{y}{3}=1时取等号,即x=2,y=3时,xy的最大值为6$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知$f(x)={(\frac{1}{2})^x}-{log_2}x$,实数a,b,c满足f(a)•f(b)•f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)证明:当$0<x<\frac{π}{2}$时,sinx<x;
(2)求不等式sinx<x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线x=2与双曲线C:$\frac{{x}^{2}}{4}$-y2=1的渐近线交于E1、E2两点,记$\overrightarrow{O{E}_{1}}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{O{E}_{2}}$=$\overrightarrow{{e}_{2}}$,任取双曲线C上的点P,若$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$(a,b∈R),则(  )
A.0<a2+b2<1B.0<a2+b2<$\frac{1}{2}$C.a2+b2≥1D.a2+b2≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若关于x的不等式x2+|x-a|<2至少有一个正数解,则实数a的取值范围是$(-2,\frac{9}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=4x2-kx-8在[5,8]上不是单调函数,则k的取值范围是(  )
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=\frac{1}{x}ln(-{x^2}-3x+4)$的定义域是(  )
A.(-∞,-4]∪[1,+∞)B.(-4,0)∪(0,1)C.(-4,1)D.(-∞,-4)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有1700辆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2x,则$f'({\frac{π}{6}})$=(  )
A.1B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案