精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,则a=$2或\frac{127}{128}$.

分析 利用分段函数,通过a的范围,列出方程求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,当a≥1时,
可得:f(-2a2+1)=3,可得log2(2a2)=3,解得a=2.
当a<1时,
可得:f(log2(1-a))=3,log2(1-a)>1时,可得$-2(lo{g}_{2}(1-a))^{2}+1=3$,解得a∈∅.
log2(1-a)<1时,可得log2(1-log2(1-a))=3,即1-log2(1-a)=8,log2(1-a)=-7,
1-a=$\frac{1}{128}$,可得a=$\frac{127}{128}$.
故答案为:2或$\frac{127}{128}$.

点评 本题考查分段函数的应用,函数的零点与方程根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.二次函数f(x)=-x2+6x在区间[0,4]上的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图(其中[x]表示不超过实数x的最大整数),则运行后输出的结果是(  )
A.31B.32C.35D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C:x2+y2-4x=0,直线l:mx-y+3m=0,则(  )
A.l与C相交B.l与C相切
C.l与C相离D.以上三个选项均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线x=2与双曲线C:$\frac{{x}^{2}}{4}$-y2=1的渐近线交于E1、E2两点,记$\overrightarrow{O{E}_{1}}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{O{E}_{2}}$=$\overrightarrow{{e}_{2}}$,任取双曲线C上的点P,若$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$(a,b∈R),则(  )
A.0<a2+b2<1B.0<a2+b2<$\frac{1}{2}$C.a2+b2≥1D.a2+b2≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程组$\left\{\begin{array}{l}{2x-y=3}\\{x+y=3}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=4x2-kx-8在[5,8]上不是单调函数,则k的取值范围是(  )
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(a,2c-b)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角A的大小;
(Ⅱ)求sinB+sinC的最大值并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数组:$({\frac{1}{1}}),({\frac{1}{2},\frac{2}{1}}),({\frac{1}{3},\frac{2}{2},\frac{3}{1}}),({\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1}}),…,({\frac{1}{n},\frac{2}{n-1},\frac{3}{n-2},…\frac{n-1}{2},\frac{n}{1}})$,记该数组为:(a1),(a2,a3),(a3,a4,a5),…则a2009=7.

查看答案和解析>>

同步练习册答案