精英家教网 > 高中数学 > 题目详情
精英家教网已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,
(1)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;
(2)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.
分析:(1)先求出焦点坐标,再利用抛物线的定义把焦点F的距离为3转化为到准线的距离为3即可求m的值;(也可以直接利用两点间的距离公式求解.)
(2)△ABQ是以Q为直角顶点的直角三角形即是
QA
QB
=0
,把直线方程和抛物线方程联立,可以得到A,B两点的坐标进而求得P以及Q的坐标,代入
QA
QB
=0
,即可求出m的值.
解答:解:(1)∵抛物线C的焦点F(0,
1
4m
)

|RF|=yR+
1
4m
=2+
1
4m
=3
,得m=
1
4

(2)联立方程
y=mx2
2x-y+2=0

消去y得mx2-2x-2=0,设A(x1,mx12),B(x2,mx22),
x1+x2=
2
m
x1x2=-
2
m
(*),
∵P是线段AB的中点,∴P(
x1+x2
2
m
x
2
1
+m
x
2
2
2
)
,即P(
1
m
yp)
,∴Q(
1
m
1
m
)

QA
=(x1-
1
m
,m
x
2
1
-
1
m
),
QB
=(x2-
1
m
,m
x
2
2
-
1
m
)

若存在实数m,使△ABQ是以Q为直角顶点的直角三角形,则
QA
QB
=0

(x1-
1
m
)•(x2-
1
m
)+(m
x
2
1
-
1
m
)(m
x
2
2
-
1
m
)=0

结合(*)化简得-
4
m2
-
6
m
+4=0

即2m2-3m-2=0,∴m=2或m=-
1
2
(舍去),
∴存在实数m=2,使△ABQ是以Q为直角顶点的直角三角形.
点评:本题考查抛物线的应用以及直线与抛物线的综合问题.解决本题的关键是看清题中给出的条件,灵活运用韦达定理,中点坐标公式进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.
(Ⅰ)证明:抛物线C在点N处的切线与AB平行;
(Ⅱ)是否存在实数k使
NA
NB
=0
,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=ax2,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.
(I)求抛物线C的焦点坐标;
(II)若点M满足
BM
=
MA
,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-
12
)
2
=r2
(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知抛物线C:y=
1
2
x2
与直线l:y=kx-1没有公共点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.
(1)证明:直线AB恒过定点Q;
(2)若点P与(1)中的定点Q的连线交抛物线C于M,N两点,证明:
|PM|
|PN|
=
|QM|
|QN|

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)已知抛物线C:y=
1
4
x2-
3
2
xcosθ+
9
4
cos2θ+2sinθ
(θ∈R)
(I)当θ变化时,求抛物线C的顶点的轨迹E的方程;
(II)已知直线l过圆x2+y2+4x-2y=0的圆心M,交(I)中轨迹E于A、B两点,若
AB
=2
AM
,求直线l的方程.

查看答案和解析>>

同步练习册答案