精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-1|.
(1)解不等式f(x)+f(x+4)≤8;
(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
).
考点:绝对值不等式的解法
专题:不等式
分析:(1)利用函数零点将绝对值去掉,将函数转化为分段函数,分类讨论解不等式;
(2)先利用已知函数将所证结论进行转化变成|ab-1|>|a-b|,再利用作差法先证|ab-1|2-|a-b|2>0,再开方即可.
解答: 解:(Ⅰ)f(x)+f(x+4)=|x-1|+|x+3|=
-2x-2,x<-3
4,-3≤x≤1
2x+2,x>1

当x<-3时,由-2x-2≥8,解得x≤-5;
当-3≤x≤1时,f(x)≤8不成立;
当x>1时,由2x+2≥8,解得x≥3.…(4分)
所以不等式f(x)≤4的解集为{x|x≤-5或x≥3}.…(5分)
(Ⅱ)f(ab)>|a|f(
b
a
)
即|ab-1|>|a-b|.…(6分)
因为|a|<1,|b|<1,
所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,
所以|ab-1|>|a-b|.
故所证不等式成立.…(10分)
点评:本题考查解绝对值不等式和证明不等式,意在考查考生运用函数零点分类讨论的解题思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是公差大于零的等差数列,数列{bn}为等比数列,且a1=1,b1=2,b2-a2=1,a3+b3=13
(Ⅰ)求数列{an}和{bn}的通项公式
(Ⅱ)设cn=anbn,求数列{cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}公差不为0,且a2a4a9成等比数列.an的前项和为Sn且 S7=70.
(1)求{an}的通项公式
(2)若bn=
1
anan+1
求的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD,AD∥BC,AB=CD=6,AD=2,BC=8,∠B=60°,点E在AB上,点F在BC上,
(1)若点G在CD上,△DEF是等边三角形,设BE=x,△GEF的边长为y,求y关于x的函数解析式,并写出定义域;
(2)在第(1)小题中,连结AF,若AF⊥EG,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

地平面上一旗杆OP,为测得它的高度h,在地平面上取一基线AB,AB=30m,在A处测得旗杆顶P点的仰角为θ且tanθ=
1
2
,在B处测得P点的仰角∠OBP=45°,又测得∠AOB=60°,求旗杆的高h.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点(-4,3),则sin(
π
2
+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点的直线交抛物线于A、B两点,O为坐标原点,则
OA
OB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,则“a=1”是“直线l2:ax+y-1=0与直线l2:x-ay-3=0垂直”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R.求f(x)图象上在点(0,1)处的切线方程.

查看答案和解析>>

同步练习册答案