【题目】已知![]()
(1)求函数
的定义域;
(2)判断函数
的奇偶性,并予以证明。
【答案】(1)(-1,1)(2)奇函数
【解析】
(1)由题意可得f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=
,由
求得函数的定义域;
(2)由于f(x)﹣g(x)=
,它的定义域为(﹣1,1),令h(x)=f(x)﹣g(x),可得h(﹣x)=﹣h(x),从而得到函数h(x)=f(x)﹣g(x)为奇函数.
(1)由于f(x)=loga(1+x),g(x)=loga(1﹣x),故f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=
,
由
,求得﹣1<x<1,故函数的定义域为(﹣1,1).
(2)由于f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=
,它的定义域为(﹣1,1),令h(x)=f(x)﹣g(x),
可得h(﹣x)=
=﹣
=﹣h(x),故函数h(x)=f(x)﹣g(x)为奇函数.
科目:高中数学 来源: 题型:
【题目】函数f(x)=aln x+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数f(x)的解析式及单调区间;
(2)若函数g(x)=f(x)+m-ln 4在
上恰有两个零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机
万只并全部销售完,每万只的销售收入为
万元,且![]()
(1)写出年利润
(万元)关于年产量
(万只)的函数解析式;
(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)若函数
在区间[0,1]上存在零点,求实数
的取值范围;
(2)当
时,若对任意
∈[0,4],总存在
∈[0,4],使
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com