精英家教网 > 高中数学 > 题目详情
已知抛物线C的方程为y=x2,过(0,1)点的直线l与C相交于点A,B,证明:OA⊥OB(O为坐标原点)
分析:由题意设出直线l的方程,和抛物线联立后化为关于x的一元二次方程,由韦达定理得到A,B两点的横坐标的积,
代入x1x2+y1y2中整理得到结果为0,所以结论得证.
解答:证明:由题意可知直线l的斜率存在,
设其斜率为k,则直线方程为:y=kx+1,
与抛物线方程联立,得
y=kx+1
y=x2
,即x2-kx-1=0,所以x1x2=-1.
设交点A,B的坐标分别为(x1,y1),(x2,y2),
由OA⊥OB?x1x2+y1y2=0?x1x2+x12x22=0?x1x2+1=0
由韦达定理可知此式成立.
所以OA⊥OB.
点评:本题考查了直线与圆锥曲线的关系,训练了一元二次方程的根与系数关系,求证该题的关键是明确
OA⊥OB?x1x2+y1y2=0,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知抛物线C的方程为y2=2px(p>0),直线:x+y=m与x轴的交点在抛物线C准线的右侧.
(Ⅰ)求证:直线与抛物线C恒有两个不同交点;
(Ⅱ)已知定点A(1,0),若直线与抛物线C的交点为Q,R,满足
AQ
AR
=0
,是否存在实数m,使得原点O到直线的距离不大于
2
4
,若存在,求出正实数p的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py(p>0),焦点F为 (0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=2px(p>0且p为常数),过焦点F作直线与抛物线交于A(x1,y1),B(x2,y2
①求证:4x1x2=p2
②若抛物线C的准线l与x轴交于N点且AB⊥AN,求|x1-x2|

查看答案和解析>>

同步练习册答案