精英家教网 > 高中数学 > 题目详情
12.函数y=sin($\frac{1}{3}$x+$\frac{π}{4}$),x∈R的最小正周期为(  )
A.B.πC.D.

分析 找出函数解析式中ω的值,代入周期公式即可求出最小正周期.

解答 解:∵y=sin($\frac{1}{3}$x+$\frac{π}{4}$),
∵ω=$\frac{1}{3}$,
∴T=$\frac{2π}{\frac{1}{3}}$=6π.
故选:D.

点评 此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx,则二项式($\sqrt{t}$-$\frac{a}{6t}$)a展开式中的常数项是15.(填数值)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知y=2x(x≠0).
(1)求$\frac{{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$的值.
(2)求证:x2+$\frac{3}{2}$xy-y2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一信号灯闪烁时每次等可能的出现红色或绿色信号,在该信号灯闪烁三次中,已知有一次是绿色信号,则至少有一次是红色信号的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知A(1,2),B(3,4),C(-2,2),D(-3,5),则向量$\overrightarrow{AB}$在$\overrightarrow{CD}$上的射影为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数fk(x)=ax-(k-1)a-x(k∈Z,a>0,a≠1,x∈R),g(x)=$\frac{{f}_{2}(x)}{{f}_{0}(x)}$.
(1)若a>1时,判断并证明函数y=g(x)的单调性;
(2)若y=f1(x)在[1,2]上的最大值比最小大2,证明函数y=g(x)的奇函数;
(3)在(2)条件下,函数y=f0(2x)+2mf2(x)在x∈[1,+∞)有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过抛物线的焦点F的直线,交抛物线于A,B两点,交准线于C点,若$\overrightarrow{AF}=2\overrightarrow{FB},\overrightarrow{CF}=λ\overrightarrow{FB}$,则λ=(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R)
(1)求f(x)的单调区间和极值;
(2)若f(x)≤0对定义域所有x恒成立,求k的取值范围;
(3)n≥2,n∈N时证明 ln2+ln3+…lnn≤$\frac{n(n-1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过x轴上一定点M作直线l与抛物线y2=4x交于P,Q两点,若$\overrightarrow{OP}•\overrightarrow{OQ}=5$,则M点的坐标为(5,0)或(-1,0).

查看答案和解析>>

同步练习册答案