分析 (1)根据函数单调性的定义证明即可;(2)求出g(x)的表达式,根据函数奇偶性的定义证明即可;
(3)条件等价于-2m=$\frac{{2}^{2x}{+2}^{-2x}}{{2}^{x}{-2}^{-x}}$在x∈[1,+∞)有零点,令p=2x,则p≥2,令t=p-$\frac{1}{p}$,则t在p∈[2,+∞)递增,得到关于t的函数h(t)=$\frac{{t}^{2}+2}{t}$=t+$\frac{2}{t}$,任取t1>t2≥$\frac{3}{2}$,
结合函数的单调性求出h(t)的最小值,从而求出m的范围即可.
解答 解:(1)g(x)=$\frac{{f}_{2}(x)}{{f}_{0}(x)}$=$\frac{{a}^{x}{-a}^{-x}}{{a}^{x}{+a}^{-x}}$=1-$\frac{2}{{a}^{2x}+1}$,
若a>1,ax+a-x>0恒成立,
∴g(x)是R上的增函数,
证明如下:
任取x1<x2,g(x1)-g(x2)=$\frac{2{(a}^{{2x}_{1}}{-a}^{{2x}_{2}})}{{(a}^{{2x}_{1}}+1){(a}^{{2x}_{2}}+1)}$,
∵a>1,x1<x2,∴${a}^{{2x}_{1}}$+1>0,${a}^{{2x}_{1}}$-${a}^{{2x}_{2}}$<0,
故g(x1)<g(x2),g(x)在R递增;
(2)由题意y=f1(x)=ax,a>1时,a2-a=2,解得:a=2或a=-1(舍),
当0<a<1时,a-a2=2,无解,
综上,a=2,
由(1)得:此时g(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}{+2}^{-x}}$的定义域是R,
定义域关于原点对称,g(-x)=$\frac{{2}^{-x}{-2}^{x}}{{2}^{-x}{+2}^{x}}$=-g(x),
∴g(x)是奇函数;
(3)在(2)的条件下,f0(2x)+2mf2(x)=22x+2-2x+2m(2x-2-x),
∵x∈[1,+∞),∴2x-2-x>0,
故条件等价于-2m=$\frac{{2}^{2x}{+2}^{-2x}}{{2}^{x}{-2}^{-x}}$在x∈[1,+∞)有零点,
令p=2x,则p≥2,令t=p-$\frac{1}{p}$,则t在p∈[2,+∞)递增,
∴t≥$\frac{3}{2}$,-2m=$\frac{{t}^{2}+2}{t}$,
设h(t)=$\frac{{t}^{2}+2}{t}$=t+$\frac{2}{t}$,任取t1>t2≥$\frac{3}{2}$,
则t1-t2>0,t1•t2>$\frac{9}{4}$,
h(t1)-h(t2)=t1+$\frac{2}{{t}_{1}}$-(t2+$\frac{2}{{t}_{2}}$)=$\frac{{(t}_{1}{-t}_{2}){{(t}_{1}t}_{2}-2)}{{{t}_{1}t}_{2}}$>0,
∴h(t)在t∈[$\frac{3}{2}$,+∞)递增,
h(t)≥$\frac{17}{6}$,即-2m≥$\frac{17}{6}$,
∴m≤-$\frac{17}{12}$.
点评 本题考查了函数的单调性、奇偶性的证明,考查函数的零点问题以及函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{36}$ | B. | $\frac{21}{216}$ | C. | $\frac{5}{108}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 380 | B. | 620 | C. | $\frac{19}{50}$ | D. | $\frac{31}{50}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com